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“Fundamental theorists need 
to provide some guidance …”

3 Simple Ideas: 
� Λ isn’t small (GΛ ~ 10-6)
� No scalars, no fine tuning
� Quantum IR from L = (16πG)-1 (R-2Λ)√-g

3 Simple Consequences:
� Λ starts inflation
� IR gravitons eventually stop it
� Long Inflation because gravity is weak



Establishment View 

No problem fine tuning
� φ(tI,x) to make inflation start

� V(φ) for long, & δρ/ρ, & end with Λ~0

� ∆L = gφΨ2 for reheating
� then re-tune Veff(φ) . . .

But QG inflation is nonsense



Small ≠ Zero Can Matter

Establishment view of redshifting IR gravitons
� k > H(t) a(t) � physical

� k < H(t) a(t) � pure gauge, can do nothing

� k > H(t) a(t) � physical, let’s find the signal!

Big volume can beat small ρ
� Const. ρ over radius R � M ~ ρR3

� U ~ -GM2/R ~ -Gρ2R5

� ρU ~ U/R3 ~ -Gρ2R2



Perturbative Results

� Perturb around
� ds2 = -dt2 + a2(t) dx2 with a(t) = eHt

� 3[Heff(t)]2 = Λ + 8πGρ(t)
� ρ ∼ +Λ2

� ρ ∼ –GΛ3 ln[a(t)]
� ρL ∼ –Λ2 [GΛln(a)]L-1

� dρ/dt = -3Heff(ρ+p) � p(t) ~ -ρ(t)
� Hence p ∼ -ρ ∼ Λ2 f[GΛln(a)] 



Need Phenomenological Model

� Advantages of QG Inflation
� Natural initial conditions

� No fine tuning

� Unique predictions

� But tough to USE! 

� Try guessing most cosmologically 
significant part of effective field eqns



Gµν = -Λgµν + 8πGTµν[g]

� Tµν[g] = pgµν + (ρ+p)uµuν
� Posit p[g]

� Infer ρ and uµ from conservation

� Getting p[de Sitter] = Λ2 f[GΛ ln(a)]
� […] must be nonlocal because 

Rµνρσ = Λ/3 [gµρgνσ – gµσgνρ]

� Simplest is X = 1/� R 



R  &   � ≡ (-g)-½∂µ[(-g)½gµν∂ν]

� R = 6 dH/dt + 12 H2 for flat FRW

� �f(t) = -a-3 d/dt [a3 df/dt]
� Hence 1/� f =  -∫t du a-3 ∫u dv a3 f(v)

� For de Sitter a(t) = eHt and dH/dt = 0
� 1/� R = - 4 Ht + 4/3 [1 – e-3Ht] ∼ -4 ln(a)



Spatially Homogeneous Case

� Gµν = (p-Λ)gµν + (ρ+p) uµuν
� X =1/� R = -∫tdu a-3∫udv a3 [12H2 + 6dH/dv]
� p = Λ2 f(-GΛ X)
� ρ+p = a-3∫tdu a3 dp/du   and   uµ = δµ

� Two Eqns
� 3H2 = Λ + 8πG ρ
� -2dH/dt – 3H2 = -Λ + 8πG p    (easier)

� Parameters
� 1 Number: GΛ (nominally ∼ 10-6)
� 1 Function: f(x)  (needs to grow w/o bound)



Numerical Results for
GΛ=1/300   and   f(x) = ex-1

� X= -∫tdu a-3∫udv a3R
� Criticality

p = Λ2f(-GΛX) = Λ/8πG

� Evolution of X(t)
� Falls steadily to Xc

� Then oscillates with 
constant period and 
decreasing amplitude

� For all f(x) growing 
w/o bound



Inflation Ends, H(t) goes < 0, 
R(t) oscillates about 0



Analytic Treatment (ǫ ≡ GΛ)

� 2 dH/dt + 3 H2 = Λ[1 - 8πǫf(-ǫX)]
� X(t) = Xc + ∆X(t)

� f ≈ fc - ǫ∆X f’c
� 2dH/dt + 3 H2 ≈ 24πǫ f’c ∆X

� Use R = 6 dH/dt + 12 H2

� L.H.S. = R/3 – H2

� ∆X = 1/� R – Xc

� Act   � = -[d/dt + 3H]d/dt to localize
� [(d/dt)2 + 2H(d/dt) + ω]R ≈ 0
� R(t) ≈ sin(ω t)/a(t)
� ω = 24πǫΛf’c (agrees with plots!)



Generic Expansion Histories
with only ω = 24πfcr’(GΛ)2Λ

During Inflation
� a(t) = acr e-N

� H2(t) ≈ ω/9 (4N + 4/3)

During Oscillations, with ∆t = t–tcr
� a(t) ≈ acr [1 + ω∆t - √8 sin2(½ ω∆t)]

� H(t) ≈ ω [1 - √2 sin(ω∆t)]/[a(t)/acr] 



Perturbations Summary

Scalars exotic
� Need action to fix normalization

� Sub-horizon � redshift

� Super-hor. during infl. � approx. const.

� Super-hor. after inflation � oscillate at ω
� Rapid reheating from n ~ ω 101000000 modes

Tensors normal for exotic a(t)
� Oscillations too late for ∆h

2

� Leave bump at fnow ~ 1010 Hz



After Inflation

� Model driven by X = 1/� R
� Oscillations & H < 0 � efficient reheating

� H = 1/2t � R = 6 dH/dt + 12 H2 = 0

� QG ends inflation, reheats & then turns 
off for most of cosmological history
� X(t) = -∫tdu a-3∫udv a3 R � Xc



Two Problems at Late Times

Eventually matter dominates
� H(t) goes from 1/(2t) to 2/(3t)
� R = 6dH/dt +12H2 from 0 to 3/(4t2)
� X = 1/□ R from Xc to Xc - 4/3 ln(t/teq)

1. The Sign Problem: 
This gives further screening!

2. The Magnitude Problem:
p ≈ –Λ/G (GΛ)2 fc’ ∆X ≈ -1086 p0 x fc’ ∆X



Magnitude Problem:
Too many Λ’s

� p = Λ2 f(-GΛ 1/□ R)
� Dangerous changing initial Λ2

� But can do -GΛ 1/□[R] � -G/□[ “Λ”R]

� Properties of “Λ”
� Approximately Λ during inflation
� Approx. R by onset of matter domination
� No change to initial value problem
� Invariant functional of metric

� Many choices but “Λ” = R(t/10) works
� Can specify invariantly



Same as before with
“Λ” = ¼ R(t/10)
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Sign Problem: R(t) > 0

� p = Λ2 f(-G/□[ “Λ” R])
� Need to add term to “Λ” R inside [  ]

� Nearly zero during inflation & radiation
� Comparable to R2 after matter
� Opposite sign

� Many choices but -R00 �-3qH2 works
� -R00 ≈ +Λ during inflation
� -R00 ≈ -2/(3t4) during matter domination



Why Late Acceleration
from ptot ≈ -ω∆X/(24πG)

Why Acceleration with w = -1?
� ∆X = 1/□ [R × –R00/Λ]

� 1/□ = -∫dt’ a-3 ∫dt’’ a3

� R × –R00 ~ -1/t’’4

� Hence ∆X dominated by const. lower limit

Why Late?
� ∆X ~ (Hm)2/Λ
� Λnow ~ (Hm)2

ω/Λ << (Hm)2



Conclusions

� Advantages of QG Inflation
1. Based on fundamental IR theory � GR

2. Λ not unreasonably small! 

3. Λ starts inflation naturally

4. QG back-reaction stops
Simple idea: Grav. Int. E. grows faster than V

5. 1 free parameter: Λ

� But tough to use � Phenom. Model



Tµν[g] = p gµν + (ρ+p) uµuν
� Guess p[g] = Λ2 f(-GΛ X)

� X1 = 1/� R
� Infer ρ and ui from conservation

� Homogeneous evolution: (generic f)
� X falls to make p cancel –Λ/8πG
� Then oscillates with const. period & decreasing amp.

� Reheats to radiation dom. (R=0)
� Matter dom. � R≠0
� X2 = 1/□ [R×-R00/Λ] can give late acceleration

� Perturbations
� No change to cosmo. tensors, bump at f ~ 1010 Hz
� Scalar norm. not predicted but ok time dependence


