Nonlocal Models of Cosmology

Nick Tsamis (U. Crete) Richard Woodard (U. Florida) arXiv:0904.2368 arXiv:1001.4929 "Fundamental theorists need to provide some guidance ..."

3 Simple Ideas:

- Λ isn't small (G $\Lambda \sim 10^{-6}$)
- No scalars, no fine tuning
- Quantum IR from $\mathcal{L} = (16\pi G)^{-1} (R-2\Lambda)\sqrt{-g}$
- 3 Simple Consequences:
 - A starts inflation
 - IR gravitons eventually stop it
 - Long Inflation because gravity is weak

Establishment View

No problem fine tuning

- $\phi(t_I, x)$ to make inflation start
- V(ϕ) for long, & $\delta\rho/\rho$, & end with $\Lambda\sim 0$
- $\Delta \mathcal{L} = g \phi \Psi^2$ for reheating
 - then re-tune $V_{eff}(\phi)$. . .

But QG inflation is nonsense

Small ≠ Zero Can Matter

Establishment view of redshifting IR gravitons

- $k > H(t) a(t) \rightarrow physical$
- $k < H(t) a(t) \rightarrow$ pure gauge, can do nothing
- $k > H(t) a(t) \rightarrow physical, let's find the signal!$

Big volume can beat small ρ

- Const. ρ over radius R \rightarrow M ~ ρ R³
- U ~ $-GM^2/R \sim -G\rho^2R^5$
- $\rho_U \sim U/R^3 \sim -G\rho^2 R^2$

Perturbative Results

Perturb around • $ds^2 = -dt^2 + a^2(t) dx^2$ with $a(t) = e^{Ht}$ • $3[H_{eff}(t)]^2 = \Lambda + 8\pi G\rho(t)$ • $\rho_1 \sim +\Lambda^2$ • $\rho_{2} \sim -G\Lambda^{3} \ln[a(t)]$ • $\rho_L \sim -\Lambda^2 [G\Lambda \ln(a)]^{L-1}$ • $d\rho/dt = -3H_{eff}(\rho+p) \rightarrow p(t) \sim -\rho(t)$ • Hence p $\sim -\rho \sim \Lambda^2$ f[GAln(a)]

Need Phenomenological Model

Advantages of QG Inflation

- Natural initial conditions
- No fine tuning
- Unique predictions
- But tough to USE!
- Try guessing most cosmologically significant part of effective field eqns

$\mathsf{R} \& \equiv (-\mathsf{g})^{-1/2} \partial_{\mu} [(-\mathsf{g})^{1/2} \mathsf{g}^{\mu\nu} \partial_{\nu}]$

R = 6 dH/dt + 12 H² for flat FRW
f(t) = -a⁻³ d/dt [a³ df/dt]
Hence 1/ f = -∫^t du a⁻³ ∫^u dv a³ f(v)
For de Sitter a(t) = e^{Ht} and dH/dt = 0
1/ R = -4 Ht + 4/3 [1 - e^{-3Ht}] ~ -4 ln(a)

Spatially Homogeneous Case

•
$$G_{\mu\nu} = (p-\Lambda)g_{\mu\nu} + (\rho+p) u_{\mu}u_{\nu}$$

• X = 1/ R = - $\int^{t} du a^{-3} \int^{u} dv a^{3} [12H^{2} + 6dH/dv]$

•
$$\rho + p = a^{-3} \int^t du \ a^3 \ dp/du$$
 and $u^{\mu} = \delta^{\mu_0}$

Two Eqns

•
$$3H^2 = \Lambda + 8\pi G \rho$$

- $-2dH/dt 3H^2 = -\Lambda + 8\pi G p$ (easier)
- Parameters
 - 1 Number: GA (nominally $\sim 10^{-6}$)
 - I Function: f(x) (needs to grow w/o bound)

Numerical Results for $G\Lambda=1/300$ and $f(x) = e^{x}-1$

- X= -∫^tdu a⁻³∫^udv a³R
- Criticality

 $p = \Lambda^2 f(-G\Lambda X) = \Lambda/8\pi G$

- Evolution of X(t)
 - Falls steadily to X_c
 - Then oscillates with constant period and decreasing amplitude
 - For all f(x) growing w/o bound

Inflation Ends, H(t) goes < 0, R(t) oscillates about 0

Analytic Treatment ($\epsilon \equiv G\Lambda$)

•
$$2 \text{ dH/dt} + 3 \text{ H}^2 = \Lambda [1 - 8\pi \epsilon f(-\epsilon X)]$$

- $X(t) = X_c + \Delta X(t)$
 - $f \approx f_c \epsilon \Delta X f'_c$
 - 2dH/dt + 3 H² \approx 24 $\pi\epsilon^2$ f'_c Δ X
- Use $R = 6 dH/dt + 12 H^2$

•
$$\Delta X = 1/R - X_c$$

- Act = -[d/dt + 3H]d/dt to localize
 - $[(d/dt)^2 + 2H(d/dt) + \omega^2]R \approx 0$
 - R(t) $\approx \sin(\omega t)/a(t)$
 - $\omega^2 = 24\pi\epsilon^2 \Lambda f'_c$ (agrees with plots!)

Generic Expansion Histories with only $\omega^2 = 24\pi f_{cr}'(G\Lambda)^2\Lambda$

During Inflation

•
$$a(t) = a_{cr} e^{-N}$$

• $H^{2}(t) \approx \omega^{2}/9 (4N + 4/3)$

During Oscillations, with $\Delta t = t - t_{cr}$

- $a(t) \approx a_{cr} [1 + \omega \Delta t \sqrt{8} \sin^2(\frac{1}{2} \omega \Delta t)]$
- H(t) $\approx \omega [1 \sqrt{2} \sin(\omega \Delta t)]/[a(t)/a_{cr}]$

Perturbations Summary

Scalars exotic

- Need action to fix normalization
- Sub-horizon \rightarrow redshift
- Super-hor. during infl. \rightarrow approx. const.
- Super-hor. after inflation \rightarrow oscillate at ω
 - Rapid reheating from n ~ $\omega^3 \ 10^{100000}$ modes

Tensors normal for exotic a(t)

- Oscillations too late for Δ_{h^2}
- Leave bump at $f_{now} \sim 10^{10} \mbox{ Hz}$

After Inflation

• Model driven by X = 1/R

■ Oscillations & H < 0 → efficient reheating</p>

• $H = 1/2t \rightarrow R = 6 dH/dt + 12 H^2 = 0$

QG ends inflation, reheats & then turns off for most of cosmological history

• $X(t) = -\int^t du \ a^{-3} \int^u dv \ a^3 \ R \rightarrow X_c$

Two Problems at Late Times

Eventually matter dominates

- H(t) goes from 1/(2t) to 2/(3t)
- $R = 6dH/dt + 12H^2$ from 0 to 3/(4t²)
- $X = 1/\Box R$ from X_c to $X_c 4/3 \ln(t/t_{eq})$
- 1. The Sign Problem:

This gives further screening!

2. The Magnitude Problem:

 $p \approx$ –A/G (GA)² $f_c{'}\,\Delta X \approx$ -1086 p_0 x $f_c{'}\,\Delta X$

Magnitude Problem: Too many Λ's

- $p = \Lambda^2 f(-G\Lambda 1/\Box R)$
 - Dangerous changing initial Λ^2
 - But can do -GA $1/\Box[R] \rightarrow -G/\Box[``A''R]$
- Properties of "Λ"
 - Approximately Λ during inflation
 - Approx. R by onset of matter domination
 - No change to initial value problem
 - Invariant functional of metric
- Many choices but " Λ " = R(t/10) works
 - Can specify invariantly

Sign Problem: R(t) > 0

- $p = \Lambda^2 f(-G/\Box[``\Lambda'' R])$
- Need to add term to "\" R inside []
 - Nearly zero during inflation & radiation
 - Comparable to R² after matter
 - Opposite sign
- Many choices but $-R_{00} \rightarrow -3qH^2$ works
 - $-R_{00} \approx +\Lambda$ during inflation
 - $-R_{00} \approx -2/(3t^4)$ during matter domination

Why Acceleration with w = -1?

- $\Delta X = 1/\Box [R \times -R_{00}/\Lambda]$
- $1/\Box = -\int dt' a^{-3} \int dt'' a^{3}$
- $R \times -R_{00} \sim -1/t''^4$
- Hence ΔX dominated by const. lower limit

Why Late?

- $\Delta X \sim (H_m)^2 / \Lambda$
- $= \Lambda_{\text{now}} \sim (H_{\text{m}})^2 \omega^2 / \Lambda << (H_{\text{m}})^2$

Conclusions

- Advantages of QG Inflation
 - 1. Based on fundamental IR theory → GR
 - 2. Λ not unreasonably small!
 - 3. Λ starts inflation naturally
 - 4. QG back-reaction stops Simple idea: Grav. Int. E. grows faster than V
 - 5. 1 free parameter: Λ
- But tough to use → Phenom. Model

$T_{\mu\nu}[g] = p g_{\mu\nu} + (\rho + p) u_{\mu}u_{\nu}$

- Guess $p[g] = \Lambda^2 f(-G\Lambda X)$
 - $X_1 = 1/R_1$
 - Infer ρ and u_i from conservation
- Homogeneous evolution: (generic f)
 - X falls to make p cancel $-\Lambda/8\pi G$
 - Then oscillates with const. period & decreasing amp.
- Reheats to radiation dom. (R=0)
 - Matter dom. → R≠0
 - $X_2 = 1/\Box [R \times -R_{00}/\Lambda]$ can give late acceleration
- Perturbations
 - No change to cosmo. tensors, bump at f $\sim 10^{10}$ Hz
 - Scalar norm. not predicted but ok time dependence