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Problem of Time

Diffeomorphism invariance in GR Vs
Fixed parameter time in Newtonian Physics.

• Time in Quantum Theory:

– Not Observable

– Appears as a parameter

– Physical clocks run backwards in abstract
Newtonian Time

• Time in General Relativity:

– How does ‘change’ appears?

– Time is locally defined

– How to make it compatible with QT
that is based on Newtonian Time?
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Technical Problem

• Constrained Systems:

Less degrees of freedom

e.g. in E.M.: Aµ → Aµ + ∂µφ

Physics cannot depend on choice of gauge

Physical states are equivalences classes

• To quantize:

(a) Constrain and THEN quantize

(b) Quantize and THEN impose the con-

straint
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• If the constraint in the Classical Theory is:

φ(p, x) = 0

in the Quantum Theory becomes:

φ̂|ψ〉 = 0

and also require that observables Â obey:

[Â, φ̂] = 0

We start with the kinematical Hilbert space

(unconstrained) Hkin.

The physical states that obey the above

condition form the physical Hilbert space

Hphys.



GR as Constrained System
The “gauge” in general relativity is the in-
variance of the theory under diffeomorphisms,
Diff(M), which breaks into:

(a) Spatial “three”-dimensional diffeomorphisms

(b) Hamiltonian constraint: Ĥ|ψ〉 = 0

i~dÂ(t)

dt
= [Ĥ, Â(t)] = 0

for any Â observable, due to the constraint:

Any observable Â, is independent of time!

• General feature of ANY theory that has van-
ishing Hamiltonian (in particular when the con-
straint is quadratic in all momenta, and it can-
not be “deparametrized”)
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Timeless Theories

• Need to construct a Quantum Theory that

time does not have any fundamental role.

• Time “emerges” as a coarse grained property

of the relative field configurations.

All physical questions can be translated

to questions about the possible relative

configurations of the universe and its

material content.

(a) Evolving Constants

(b) Decoherent Histories
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The Decoherent Histories

Approach to QT

An alternative formulation of Quantum Theory
designed to deal with closed systems. Among
other things it aims to

(a) Assign probabilities to histories of closed
system.

(b) Deal with time-extended questions.

(c) Put space and time in equal footing. Time
is no longer in a preferred position, since we
are dealing with whole histories of the sys-
tem (rather than single time propositions).

Due it these facts, it suits well for dealing with
the problem of time.
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Decoherent Histories:

Non-relativistic QM

Copenhagen probabilities for sequential mea-

surements:

P (αt1 at t1 and αt2 at t2 · · · αtn at tn; ρ(t0))=

Tr(αtn(tn) · · ·αt1(t1)ρ(t0)αt1(t1) · · ·αtn(tn))

This is NOT probability for closed system, fails

to satisfy the “additivity of disjoint regions of

the sample space”, due to interference.

Under certain conditions this probability CAN

be assigned to histories of closed systems.

Class operator: Cα = αtn(tn) · · ·αt1(t1)
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Decohernece Functional (measures interference):

D(α, α′) = Tr(CαρC
†
α′)

A set of histories {αi}, that is disjoint and
exhaustive is called complete.

Probabilities are assigned to a history αi, pro-
vided it belongs to a complete set such that:

D(αi, αj) = 0, for all i 6= j.

The probability is then p(αi) = D(αi, αi).

• Typically, there exist more than one com-
plete set that obeys the decoherence condition.
There is some interpretational ambiguity.

• The above can be generalized (relativistic
QT or quantum gravity). Construction of Class
Operators that correspond to physical ques-
tions, and an inner product to define probabil-
ities and the decoherence condition.



Decoherent Histories and

the Problem of Time

Histories and Classical Timeless Questions:

Does a (classical) trajectory cross a given
region ∆ of the configuration space? If
it is the full trajectory, then this is in-
deed reparametrization invariant.

In the Quantum Case, we require also:

(i) Initial state has to obey: Ĥ|ψ〉 = 0

(ii) Class operator: [Ĉα, H] = 0

(iii) We have to use the induced (or Rieffel)
inner product. (essentially an inner product
defined on solutions of the constraint.)
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Proposed Class Operator

What is the probability that the sys-

tem crosses region ∆ of configuration

space, with no reference in time.

Need to find a Class Operator (CO) that com-

mutes with the Hamiltonian and gives (semi-

classically) sensible results.

Since the classical reparametrization invariant

object is full trajectory we consider the unphys-

ical parameter time running from −∞ to +∞.

CO Crossing ∆= 1- CO Always in ∆̄

C∆̄ =
t=+∞∏

t=−∞
P̄ (t)
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[C∆̄, H] = 0

C∆̄ = lim
t′′→∞,t′→−∞

exp(−iHt′′)gr(t
′′, t′) exp(iHt′)

C∆ = 1− C∆̄

This expression resembles the arrival time prob-

lem in standard non-relativistic quantum me-

chanics (see J.J. Halliwell & E. Zafiris in PRD

also PW in IJTP and recently Halliwell & Years-

ley).

Note that for periodic Hamiltonians (bounded

systems), the above analysis changes slightly

(see details in J.J.Haliwell & PW).



Restricted Propagator

• Path Integral definition:

gr(x, t | x0, t0) =
∫

∆̄
Dx exp(iS[x(t)])

= 〈x|gr(t, t0)|x0〉 (1)

(the integral is over paths restricted to the re-
gion ∆̄)

• Operator definition (more general) δt → 0,
n →∞ keeping δt× n = (t− t0):

gr(t, t0) = lim
δt→0

P̄ e−iH(tn−tn−1)P̄ · · · P̄ e−iH(t1−t0)P̄

= P̄ exp
(−i(t− t0)P̄HP̄

)
P̄ (2)

• An important property:

g†r(t, t0)gr(t, t0) = P̄ (3)

10



General No-Crossing

Probabilities and D.Condition

Using the last property we have (candidate)
probability for not crossing:

p∆̄ = 〈ψ|C†
∆̄

C∆̄|ψ〉 = 〈ψ|P̄ |ψ〉

p∆ = 1− p∆̄ = 〈ψ|P |ψ〉

Provided we have decoherence, while as deco-
herence condition we get:

lim
t→∞,t0→−∞

eiE(t−t0)〈ψ|gr(t, t0)|ψ〉 = 〈ψ|P̄ |ψ〉

which becomes the need to vanish on the bound-
ary of the region, i.e.:

〈x|ψ〉 = 0, ∀x ∈ ∂∆̄
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Example: FRW-QC

Homogeneous and isotropic universe with k =

1 (3-sphere). First (a) empty and then (b)

with a scalar field with potential V (φ) = e2φ.

First case:

Ψ′′(α)/4α−Ψ′(α)/8α2 + αΨ(α) = 0

The solutions are Bessel functions we take one

of them, Ψ(α) ∝ α3/4J−2
3
(α2) with graph

2 4 6 8 10

-0.5

0.5

1.0

And can ask the probability that it never crosses

the region α > 6. It coincides with a zero of

the Bessel function and thus decoheres. The

probability turns out to be pc ' 0.27
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Second case (with scalar field). Wheeler De-
Witt equation

(2α− α3e2φ)Ψ(α, φ)− 1

2α

∂2Ψ(α, φ)

∂α2

− 1

2α2

∂Ψ(α, φ)

∂α
+

1

2α3

∂2Ψ(α, φ)

∂φ2
= 0

The general solution is

Ψ(α, φ) = C2 exp
α2e−2φ(−4C2

1 − 4e4φ + 6e6φα2)

8C1

Consider one solution (note that it is NOT
normalizable in the normal inner product, and
we need to use an inner product on solutions)

Ψ(α, φ) = exp
α2e−2φ(−42 − 4e4φ + 6e6φα2)

8
−

exp
α2e−2φ(−4 · 1.52 − 4e4φ + 6e6φα2)
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Since our solution vanish at the above bound-
ary, we have decoherence and we can assign
the crossing probability (note that the inte-
gral |Ψ(α, φ)|2 at the region is no-zero, how-
ever in the induced inner product it results to
zero probability) pc = 0.

Other solutions (involving superpositions) or
systems with more degrees of freedom (e.g.
Bianchi Cosmologies, different matter content),
result to non-trivial questions.

Compariton with relational observables: Choose
questions like “value(s) of α when φ = 15 or
when φ > 15”. This corresponds to an observ-
able that projects at the range of φ in question.
The resulting operator does NOT commute
with Hamiltonian. Fails only on the boundary
of the region.

If one restricted attention to a single solution
(not formally allowed at this approach) that
vanishes at this boundary, he would recover
exactly our result.



Summary & Conclusions

• We examined the DH analysis of timeless
QT. We got Class Operators that respect the
Hamiltonian constraint.

• They consisted of a general enough set of
physical questions of the type:

“Which is the prob that it crosses a region in
configuration space with no reference in time”

• We have got an easy but restrictive decoher-
ence condition “The initial state has to vanish
on the boundary of the region considered”

• The probabilities for those histories are easily
calculated.

• We considered as an example the case of
FRW Quantum Cosmology with scalar field.
Given a solution of the Wheeler-DeWitt equa-
tion we found questions that can be answered
and compared with the evolving constants.
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