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BH-Torus Models

Without self-gravity: Abramowicz, Jaroszynski, Sikora, 1978

AJS disks: analytic solutions with simple rotational profile,

e.g.
| =-u,/ u,= const.
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BH-Torus Models

Without self-gravity: (Qian et al. 2009)

A new ansatz for non-constant, | = I(r,6) distribution.
Agrees well with outcome of MHD simulations.
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NONAXISYMMETRIC INSTABILITIES

Without self-gravity (Papaloizou-Pringle 1984) :

P-modes due to corotation resonance near the density maximum
becomes weaker as self-gravity becomes more important

With self-gravity: two more modes (Goodman & Narayan 1988)

[-modes: elliptic-type deformation
need moderate degrees of self-gravity to appear

J-modes: essentially the Jeans instability when self-gravity is dominant



EFFECT OF INSTABILITIES

P-mode instability may cause a dramatic redistribution of angular
momentum within a few dynamical timescales (Zurek & Benz)

An initial /=const. disk approaches a profile that scales as | ~ r9-2>,

0.5 T T T
Q4+ -
0.3 b ! % -
o FITE
S
s 1
AT B W
02 : -
oI+ 7 _
OO : 1 ] L | L | L L L
o] | 2 3 4 5

Time [27/0)



INITIAL DATA

Stationary, axisymmetric models (Nishida and Eriguchi, 1994).
Our method improves by using a compactified radial grid.
Metric in quasi-isotropic coordinates:
ds? = —e2Vdt?+e2%(dr2+r2d0?) 42712 5in2 9 (dp—wdt)?

The horizon is at a const. r=h,,.

Boundary conditions at horizon:

B=e" = O
e/ = 0
w = wp = const.

Local flatness condition on axis of symmetry:

a=y—V



INITIAL DATA

Field equations: AL =S, (r, p

where A is the flat Laplacian and the source terms are:

1 2 1
S, = 4?1:132“[(5 + p) l i :2 + 2p] +3 r’(1 — p>)B*A *Vo * Vo — V(y — v) * V4,

Sg = 16npBe* ,
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S, = V(@v — 3y) - Vo — 16ne**(e + p)



INITIAL DATA

Invert 3 elliptic-type PDES using Green’s functions:

p=1-%_y drf dp 13,01, ¥)P o (WP, (1S, 1)
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INITIAL DATA

Transform coordinates to compactified radial grid, using
S
-
“1_—s

Assume polytropic EOS and /=/,=const.

T =

Starting from an analytic AJS solution, iterate between 4 field equations
and hydrostationary equilibrium equation:

p z 1 — 1o
H—HmE/ P —in(X) +in o
0O e+p ut 1 — IpS2in
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where the angular velocity is defined as
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During the iteration, the parameters hy/r . ri/r,,» W, and €., are
held fixed and define an equilibrium model for given EOS and /,,.



Example

Equilibrium torus with constant specific angular momentum:

dimensionless units

astrophysical units
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METRIC BLENDING NEAR HORIZON

Because some source terms are numerically unstable near the horizon
during the iteration process, the solution is matched to Schwarzschild

or Kerr at the innermost 5 grid points. To smooth out the differences,

the two solutions are blended smoothly in a transition zone.




3D NUMERICAL SIMULATIONS

MultiPatch Domain Representation

@ The domain is divided into blocks

@ Each block comes equipped with a rectilinear grid
@ Blocks share common boundary for GR

@ Additional overlapping boundary zones for hydro




SIMULATION METHOD

The code consists of two main parts: GR (G, = 8~ T,,) and
MHD (V, T#” = 0), coupled via energy-momentum tensor [ ,,.
GR part of the code:

@ Generalized Harmonic formulation:

Rap = —39%0c04Gap + Vialp) + - - -

Efficient constraint damping scheme

Harmonic gauge source functions set to constant values
Uses finite differences and touching patches

Penalty boundary conditions

High-order dissipative SBP differential operators
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INITIAL CONSTRAINT VIOLATIONS
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CONSTRAINT DAMPING

L1 and Linf norms of the Hamiltonian constraint violation
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NONAXISYMMETRIC INSTABILITIES
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PRESERVATION OF CENTER OF MASS
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Summary:
s\We constructed self-consistent models of BHs with massive accretion
tori, including self-gravity.

s\We evolved the BH-torus initial data with a 3D multipatch code in
harmonic gauge.

osFor |I=const. disks we demonstrated the onset of several
nonaxisymmetric instabilities.

s\We demonstrated in full GR that including self-gravity converts m=2
P-modes to I-modes.

sThe BH participates in the dynamics of the m=1 instability, so that
the center of mass of the BH-torus system is preserved.
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