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(Co)frame bundle

GL(d,R)

Figura 2: Gauge structure of gravity.
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Gauge bundle

G(N)

Figura 3: Basic principal bundle for gauge theories.
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Problems with the coframe bundle: e
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interacting term, there are no kinematical terms; Coframe bundle

and g,p are dimensionless;

€

1s static; ...

Proposition for quantum gravity: start with independent gauge
group A(d,R) and spacetime. Gauge space is NOT identified with
the tangent bundle.

At quantum regime: e and g are simple algebra-valued matter

fields. They are not M <~ T mappings. Y is a gauge connection.

Such id. must emerge naturally in some regime. g = gy pe® @ €.
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bundle of spacetime = Metric-Affine Gravity (Hehl (1976))

Second option: Reduce to the Riemann-Cartan bundle and then
identify it with the cotangent bundle. Caretul to keep all degrees

of freedom.
So, contracting the affine curvature:
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Vi

Dq% —q°.q% ;
And the minimal couplings:

T = De" — q"“beb :

Qab

Dgap + ¢4 9cb + 45 9ca

e Then, identifying with geometry (¢ —— u coframes):

gab — 5ab + Yab
g = Oowe’® el .
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conn.w, vielbein.e, matter.(F, ¢,y) = Riemann-Cartan geometry

plus matter.

Conclusions and perspectives

e Independently of the starting ”action”: any affine gauge theory

reduces to the Riemann-Cartan one with additional matter fields.

e Gauge-spacetime independence = Euclidean spacetime at

quantum level. So, we know what to do!
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e Which is the correct mechanism of mass generation?

e Quantum sector (Spin-1 theory) vs. Geometric sector (Spin-27)
e Inclusion of (fermionic and gauge) matter.

e Formalization of a theory!

e To be continued...
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