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•

Figura 1: First order geometry.

5



•

Figura 1: First order geometry.

5



•

Figura 2: Gauge structure of gravity.
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•

Figura 3: Basic principal bundle for gauge theories.
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• Problems with the coframe bundle: ea
µ and gab are dimensionless;

ea
µ induces a spacetime renormalization; EH action is a pure

interacting term, there are no kinematical terms; Coframe bundle
is static; ...

• Proposition for quantum gravity: start with independent gauge
group A(d,R) and spacetime. Gauge space is NOT identified with
the tangent bundle.

• At quantum regime: e and g are simple algebra-valued matter
fields. They are not M↔ T mappings. Y is a gauge connection.

• Such id. must emerge naturally in some regime. g = gabe
a ⊗ eb.
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• All original fields are dynamical: Y = w + q + E. The fibre (gauge
orbit) decomposes under contraction:

wL = L−1(d + w)L ,

qL = L−1qL ,

EL = L−1E ,

(1)
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bundle of spacetime ≡ Metric-Affine Gravity (Hehl (1976))

• Second option: Reduce to the Riemann-Cartan bundle and then
identify it with the cotangent bundle. Careful to keep all degrees
of freedom.

• So, contracting the affine curvature:

Ωa
b = Ra

b + V a
b ,

Ξa = DEa − qa
bE

b ,
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• Then, identifying with geometry (e 7−→ µ coframes):

gab = δab + γab ,

g = δabe
a ⊗ eb .
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aγbc + qc

bγac .

• Conclusion: START- gauge conn.Y and matter.(e, g). END- gauge
conn.w, vielbein.e, matter.(E, q, γ) ≡ Riemann-Cartan geometry
plus matter.

Conclusions and perspectives

• Independently of the starting ”action”: any affine gauge theory
reduces to the Riemann-Cartan one with additional matter fields.

• Gauge-spacetime independence ⇒ Euclidean spacetime at
quantum level. So, we know what to do!
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• Which is the correct mechanism of mass generation?

• Quantum sector (Spin-1 theory) vs. Geometric sector (Spin-2?)

• Inclusion of (fermionic and gauge) matter.

• Formalization of a theory!

• To be continued...
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