Black holes from generalized gauge field theories

J. Diaz-Alonso, D. Rubiera-Garcia Observatoire de Paris (France) and Oviedo U. (Spain) NEB14, Ioannina, Greece Based on Ann.Phys.**324** (2009) 827 and PRD**81** (2010) 064021

June 11, 2010

Outline

Some developments in gravitating field configurations Gravitating NED models Conclusions and open problems

Outline

Some developments in gravitating field configurations

Gravitating NED models

Characterization of the models Einstein-NED spherically symmetric solutions Extension to non-abelian fields NEDs in Gauss-Bonnet theory

Conclusions and open problems

Some developments in gravitating field configurations

- ► Hoffmann and Infeld (1935-37) found solutions to the Einstein equations coupled to non-linear electrodynamic models (e.g. Born-Infeld: L = β²(1 (1 ^{E²}/_{β²})^{1/2}) → Energy finite!)
- Eighties: Renewed interest in the topic, partially motivated by some low-energy results of string theory.

- Black hole solutions: Several NEDs coupled to GR (*e.g. Plebanski 84, Demianski 86, Oliveira 94, Gibbons 95, Rasheed 97...*)

Other developments include:

-Coupling to gravity can remove the restrictions of some non-existence theorems of solitons in flat space (*Bartnik and MacKinnon 88*)

- Black hole configurations in (Anti-)de Sitter spaces (e.g. Dey'04,
- $\ensuremath{\textit{Cai'04}}\xspace$: motivated by the AdS/CFT conjecture. Topological black holes.

- Higher-order gravity theories with NEDs (*Aiello 04*): suggested by string theory...

- Black holes in non-abelian generalized gauge field theories (*Volkov 99, Dyadichev 00, Wirschins 01, etc*)

Characterization of the models Einstein-NED spherically symmetric solutions Extension to non-abelian fields NEDs in Gauss-Bonnet theory

Characterization of the models in flat space

► Non-linear electrodynamics (NED): An arbitrary function

$$L = \varphi(X, Y)$$

of the two standard field invariants

$$X = -\frac{1}{2}F_{\mu\nu}F^{\mu\nu} = \vec{E}^2 - \vec{B}^2, \ Y = -\frac{1}{2}F_{\mu\nu}F^{*\mu\nu} = 2\vec{E}\cdot\vec{B}$$

• $\varphi(X, Y)$ restricted by some conditions (*"admissibility"*)

- 1. φ must be a continuous, derivable and single-valued function on its domain of definition of the X - Y plane
- 2. Parity invariance $\varphi(X, Y) = \varphi(X, -Y)$
- 3. Positive definite character of energy for *any* field configuration $\rho \ge \left(\sqrt{X^2 + Y^2} + X\right) \frac{\partial \varphi}{\partial X} + Y \frac{\partial \varphi}{\partial Y} - \varphi(X, Y) \ge 0$ $\rightarrow [E(r) \neq 0, B = 0] \text{ (ESS fields) determined through a first-integral}$

$$r^2\varphi_X E(r) = q$$

▶ Convergence of the energy ((3+1)-dim) of the ESS field

$$\varepsilon(q) = \int_0^\infty r^2 T_0^0(r,q) dr = q^{3/2} \varepsilon(q=1)$$

depends on the behaviour of $r^2 T_0^0(r, q) \sim E(r)$ at $r \to \infty$ and around $r \sim 0$. \rightarrow Classification of NED models into families of finite-energy ESS fields and divergent-energy ESS fields. **I) Finite-energy ESS solutions**

•
$$\underline{r \to \infty}$$
: $E(r) \sim r^p, p < -1$. Three subcases:

1.
$$-2 : Slower than coulombian (case B1)$$

2. p = -2: Usual Coulombian behaviour (case B2)

3. p < -2: Faster than coulombian (case B3)

•
$$\underline{r} \sim 0$$
: $E(r) \sim r^{p}, -1 . Two subcases:
1. A1: $E(r) \sim 1/r^{p}, -1
2. A2: $E(r) \sim a - br^{\sigma}(p = 0)$$$

Outline	Characterization of the models
Some developments in gravitating field configurations	Einstein-NED spherically symmetric solutions
Gravitating NED models	Extension to non-abelian fields
Conclusions and open problems	NEDs in Gauss-Bonnet theory

II) Divergent-energy ESS solutions

Two classes:

- UVD case: The field diverges around r ~ 0 as
 E(r) ~ βr^p, p < −1 but converges at r → ∞ (B-field).
 Example: Maxwell theory φ(X) = X (E(r) ~ βr⁻²)
- IRD case: The field vanishes at r → ∞ as E(r) ~ βr^p, -1 ≤ p < 0 → ε diverges there but converges around r ~ 0 (A-field).
 Examples: A1-IRD: φ(X) = βX^γ, γ > 3/2 A2-IRD: E(r) = 1/((r²/q+μ²)^{1/2})

Outline Characterization of the models Some developments in gravitating field configurations Gravitating NED models Conclusions and open problems NEDs in Gauss-Bonnet theory

The behaviours of the admissible lagrangian densities $\varphi(X) = \varphi(X, Y = 0)$ are summarized in this plot $(E(r) \sim r^p)$:

 $\varphi (X, Y=0)$

Einstein-NED spherically symmetric solutions

• Action:
$$S = S_G + S_{NED} = \int d^4x \sqrt{-g} \left[\frac{R}{16\pi G} - \varphi(X, Y) \right]$$

Source symmetry T_0^0 leads to a SS line element

$$ds^2 = \lambda(r)dt^2 - \lambda^{-1}(r)dr^2 - r^2(d\theta^2 + \sin^2\theta d\vartheta^2)$$

- The first-integral remains unmodified in the gravitational context. Also X = E(r)² does not depend on λ(r).
- Integration of the metric leads to

$$\lambda(r) = 1 - \frac{2M}{r} + \frac{2\varepsilon_{ex}(r)}{r}$$

 $(\varepsilon_{ex}(r,q) = 4\pi \int_{r}^{\infty} R^2 T_0^0(R,q) dR$: exterior integral of energy, a monotonically decreasing and concave function of r)

• Horizons: $\lambda(r_h) = 0 \rightarrow M - \frac{r_h}{2} = \varepsilon_{ex}(r, q)$

Outline Characterization of the models Some developments in gravitating field configurations Gravitating NED models Conclusions and open problems NEDs in Gauss-Bonnet theory

► Horizons given by the cut points of the curves $y = \varepsilon_{ex}(r, q)$ with the beam of straight lines $y = M - r_h/2$

ightarrow Available for cases A1, A2 (16 π qa \ge 1)

J. Diaz-Alonso, D. Rubiera-Garcia Observatoire de Paris Black holes from generalized gauge field theories

 Outline
 Characterization of the models

 Some developments in gravitating field configurations Gravitating NED models
 Einstein-NED spherically symmetric solutions Extension to non-abelian fields

 Conclusions and open problems
 NEDs in Gauss-Bonnet theory

The behaviour of the metric around r ~ 0 depends on the sign of M − ε(q) Example: In the case A2 with 16πqa > 1:

• "Finite-metrics" (around $r \sim 0$) only exist for fields A2: $\lambda(0) \rightarrow 1 - 16\pi qa$ Outline Characterization of the models Some developments in gravitating field configurations Gravitating NED models Conclusions and open problems NEDs in Gauss-Bonnet theory

Divergent-energy family (I): UVD + B-Field

M = M_{extr}(q): Extreme black hole
 M < M_{extr}(q): No horizons (naked singularity)
 M > M_{extr}(q): Two-horizon BH (event and Cauchy)

Divergent-energy family (II): IRD + A-Field

► Since the energy diverges at infinity, ε_{ex}(r, q) is not well defined: the metric is integrated as (C: integration constant)

$$\lambda(r) = 1 + \frac{C}{r} - \frac{2\varepsilon_{in}(r,q)}{r}$$

where

$$\varepsilon_{in}(q,r) = 4\pi \int_0^r R^2 T_0^0(R,q) dR$$

monotonically increasing and convex

Similar classification procedure as in the finite-energy cases, depending on the sign of C.

 \rightarrow They tend to 1 at $r\rightarrow\infty$ slower than the Schwarzschild solution

- T always positive for A2 (16πqa > 1): similar to the Schwarzschild solution.
- A1, A2 $(16\pi qa > 1)$, UVD: RN-like behaviour
- ▶ Critical case $(16\pi qa = 1)$: T at $r_h \rightarrow 0$ can diverge, vanish or take a (positive) finite value.

Extension to non-abelian fields

Taking the two standard first-order field invariants X = -¹/₂F^a_{µν}F^{µνa}, Y = -¹/₂F^a_{µν}F^{*µν}, a = 1 · · · N.
 Configurations A^a₀ ≠ 0, A^a_i = 0, ∀ a lead to N first-integrals (X = ∑ⁿ_{i=1}(E^a)²)

$$r^a \varphi_X E^a = q^a$$

Similar procedure of metric integration as for the abelian case, and the solution is the same under the replacement:

$$\begin{split} q &\to Q = \sqrt{\sum_{a=1}^{N} (q^{a})^{2}} \text{ "mean-square" charge} \\ &\to \vec{E}^{a} = \frac{q^{a}}{Q} \vec{E}(r) \\ \lambda(r) &= 1 - \frac{2M}{r} + \frac{2\varepsilon_{ex}(r,Q)}{r}; \varepsilon_{ex}(r,Q) = 4\pi \int_{r}^{\infty} R^{2} T_{0}^{0}(R,Q) dR \end{split}$$

NED in Gauss-Bonnet theory

• Gauss-Bonnet: (units $16\pi G = 1$)

$$S = \int d^{n+1}x \sqrt{-g} \Big[(R - 2\Lambda) + \alpha (R_{\mu\nu\alpha\beta}R^{\mu\nu\alpha\beta} - 4R_{\mu\nu}R^{\mu\nu} + R^2) \Big] + S_{NED}$$

• Einstein equations lead to a relation

$$g_{\alpha}(r) - g_{0}(r) = \frac{l_{\alpha}^{2}}{2r^{2}}(1 - g_{\alpha}(r))^{2}, l_{\alpha}^{2} \propto (n - 2)(n - 3)\alpha, \text{ where}$$

$$g_{0}(r) = 1 - \frac{m}{r^{n-2}} + \frac{\varepsilon_{ex}(r,q)}{r^{n-2}}: \text{ solution with } \alpha = 0$$
• Generalization to $(n + 1)$ -dim:

$$\varepsilon_{ex}(r,q) \propto \frac{2}{n-1} \int_{r}^{\infty} R^{n-1} T_{0}^{0}(R,q) dR$$

Outline	Characterization of the models
Some developments in gravitating field configurations	Einstein-NED spherically symmetric solutions
Gravitating NED models	Extension to non-abelian fields
Conclusions and open problems	NEDs in Gauss-Bonnet theory

Solution of the Einstein equations:

$$g_{\alpha}(r) = 1 + \frac{r^2}{l_{\alpha}^2} \left(1 - \left[1 + \frac{4l_{\alpha}^2}{r^n} \left(M - \varepsilon_{ex}(r,q)\right) - \frac{2l_{\alpha}^2}{l_{\Lambda}^2}\right]^{1/2}\right)$$

- There is still a first-integral $r^{n-1}\varphi_X E(r) = q$
- Energy finiteness conditions (ε(q) ∝ ∫₀[∞] r^{n−1}T₀⁰(r, q)dr) in n > 3 easily obtained. Main conclusions:
 - B1, B2, B3 and A2 classes remain unmodified
 A1 class: E(r) ~ r^p convergence of ε(q) depends on n
- Many new possibilities, depending on Λ ≥ 0, M, ε(q), α, n... e.g. three-horizon black holes, branch singularities...

Conclusions and open problems

- These methods allow the analysis of general NED models without explicitly fixing the lagrangian function, and lead to:
 - 1. For NEDs with energy-divergent (in flat-space) ESS solutions, structure of gravitating solutions is similar as the RN case, or approach asymptotic flatness slower than Schwarzschild.
 - 2. For NEDs with finite-energy (in flat-space) ESS solutions, qualitatively different features appear, e.g. single horizon (non-extreme) black holes and "black points" $(r_h \rightarrow 0)$.
 - 3. In higher-order gravity theories many other solutions arise: classified also depending on $M \varepsilon(q) \ge 0$.
- Some open problems:
 - Thermodynamic analysis of these solutions, phase transitions? (work in progress)
 - 2. Stability: Existence of some general criteria? Flat space:
 - $\frac{\partial \varphi}{\partial X} 2X \frac{\partial^2 \varphi}{\partial Y^2} \ge 0 \rightarrow \text{Generalizable to GR? (work in progress)}$
 - 3. Regular solutions in $\varphi(R, X, Y)$ theories?

GB-NED. Example: Case with $\alpha > 0$ and mass *M* larger than the ESS field energy $\varepsilon(q)$ appropriately generalized to *n* dimensions.

Behaviour depends on the dimension. n > 4: "Schwarzschild-like" behaviour; n = 4 special case: the metric takes a finite value at the origin, leading to naked singularities, extreme black holes, two-horizons black holes or single-horizon black holes