Dark EnergyNEB 14, Recent Developments in Gravity, Ioannina

David Polarski

Université Montpellier 2

June 8, 2010

Dark Energy

David Polarski

Why Dark Energy?

Basics

Cosmological constant Λ

Quintessence

Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

Outlook

・ロト・西ト・西ト・日・ ウヘぐ

David Polarski

Nhy Dark Energy?

Basics

Cosmologica constant Λ

Quintessence

Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

Outlook

◆□ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○ ○ ○ ○ ○

$$\mathcal{F} = \frac{L}{4\pi d_l^2} \qquad \qquad m - M = 5 \log d_L + 25$$

$$d_{L}(z) = c (1 + z) H_{0}^{-1} |\Omega_{k,0}|^{-\frac{1}{2}} S\left(|\Omega_{k,0}|^{\frac{1}{2}} \int_{0}^{z} \frac{dz'}{h(z')} \right)$$

 Universe expansion does not look like in (old) textbooks

$$\ddot{a} < 0 \rightarrow \ddot{a} > 0$$
 at $z \sim 0.5$

What is the origin of the accelerated expansion?

We are not really unhappy...

 $\Omega_{m,0} \approx 0.3, \quad \Omega_{DE,0} \approx 0.7, \quad \Omega_{k,0} \approx 0$

・ロト ・ 雪 ・ ・ ヨ ・ ・ ヨ ・

Dark Energy

David Polarski

Why Dark Energy?

Basics

Cosmological constant Λ

Quintessence

Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

$$\mathcal{F} = \frac{L}{4\pi d_l^2} \qquad \qquad m - M = 5\log d_L + 25$$

$$d_L(z) = c (1+z) H_0^{-1} |\Omega_{k,0}|^{-\frac{1}{2}} S\left(|\Omega_{k,0}|^{\frac{1}{2}} \int_0^z \frac{dz'}{h(z')} \right)$$

 Universe expansion does not look like in (old) textbooks

$$\ddot{a} < 0 \rightarrow \ddot{a} > 0$$
 at $z \sim 0.5$

What is the origin of the accelerated expansion?

We are not really unhappy...

 $\Omega_{m,0} \approx 0.3, \quad \Omega_{DE,0} \approx 0.7, \quad \Omega_{k,0} \approx 0$

Dark Energy

David Polarski

Why Dark Energy?

Basics

Cosmological constant Λ

Quintessence

Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

$$\mathcal{F} = \frac{L}{4\pi d_l^2} \qquad \qquad m - M = 5\log d_L + 25$$

$$d_L(z) = c (1+z) H_0^{-1} |\Omega_{k,0}|^{-\frac{1}{2}} S\left(|\Omega_{k,0}|^{\frac{1}{2}} \int_0^z \frac{dz'}{h(z')} \right)$$

 Universe expansion does not look like in (old) textbooks

$$\ddot{a} < 0 \rightarrow \ddot{a} > 0$$
 at $z \sim 0.5$

What is the origin of the accelerated expansion?

► We are not really unhappy... $\Omega_{m,0} \approx 0.3, \quad \Omega_{DE,0} \approx 0.7, \quad \Omega_{k,0} \approx 0$

Dark Energy

David Polarski

Why Dark Energy?

Basics

Cosmological constant Λ

Quintessence

Scalar-tensor DE nodels

Modified gravity models

Chameleon models

Growth function, growth index

Observations

$$\mathcal{F} = \frac{L}{4\pi d_l^2} \qquad \qquad m - M = 5\log d_L + 25$$

$$d_L(z) = c (1+z) H_0^{-1} |\Omega_{k,0}|^{-\frac{1}{2}} S\left(|\Omega_{k,0}|^{\frac{1}{2}} \int_0^z \frac{dz'}{h(z')} \right)$$

 Universe expansion does not look like in (old) textbooks

$$\ddot{a} < 0 \rightarrow \ddot{a} > 0$$
 at $z \sim 0.5$

- What is the origin of the accelerated expansion?
- We are not really unhappy...

 $\Omega_{m,0} \approx 0.3, \quad \Omega_{DE,0} \approx 0.7, \quad \Omega_{k,0} \approx 0$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Dark Energy

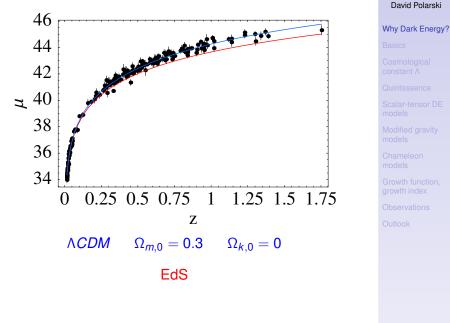
David Polarski

Why Dark Energy?

Basics

Cosmological constant Λ

Quintessence


Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Dark Energy

• $\Omega_i = \frac{\rho_i}{\rho_{cr}}$ $H^2 \equiv \frac{8\pi G}{3} \rho_{cr}$ $w_i \equiv \frac{p_i}{\rho_i}$ $\Omega_k = -\frac{k}{a^2 H^2}$ $k = 0, \pm 1$ • $\left(\frac{\dot{a}}{a}\right)^2 \equiv H^2 = H^2 \left(\sum_i \Omega_i + \Omega_k\right)$ $q \equiv -\frac{\ddot{a}}{a H^2} = \frac{1}{2} \sum_i \Omega_i (1 + 3w_i)$

- At late times for flat universe
 - $q\simeq \frac{1}{2}(1+3w_{DE}\Omega_{DE})$

• $w_{DE} < -rac{1}{3} \, \Omega_{DE}^{-1}$ q < 0 acc. ex

Dark Energy

David Polarski

Nhy Dark Energy?

Basics

Cosmological constant Λ

Quintessence

Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

Outlook

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

• $\Omega_i = \frac{\rho_i}{\rho_{cr}}$ $H^2 \equiv \frac{8\pi G}{3} \rho_{cr}$ $w_i \equiv \frac{p_i}{\rho_i}$ $\Omega_k = -\frac{k}{a^2 H^2}$ $k = 0, \pm 1$ • $\left(\frac{\dot{a}}{a}\right)^2 \equiv H^2 = H^2 \left(\sum_i \Omega_i + \Omega_k\right)$ $q \equiv -\frac{\ddot{a}}{a H^2} = \frac{1}{2} \sum_i \Omega_i (1 + 3w_i)$

• At late times for flat universe $q \simeq \frac{1}{2}(1 + 3w_{DE}\Omega_{DE})$

► $w_{DE} < -rac{1}{3} \Omega_{DE}^{-1}$ q < 0 acc. explored acc.

Dark Energy

David Polarski

Why Dark Energy?

Basics

Cosmological constant Λ

Quintessence

Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

Outlook

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

•
$$\Omega_i = \frac{\rho_i}{\rho_{cr}}$$
 $H^2 \equiv \frac{8\pi G}{3} \rho_{cr}$ $W_i \equiv$
 $\Omega_k = -\frac{k}{a^2 H^2}$ $k = 0, \pm 1$
• $\left(\frac{\dot{a}}{a}\right)^2 \equiv H^2 = H^2 \left(\sum_i \Omega_i + \Omega_k\right)$
 $q \equiv -\frac{\ddot{a}}{aH^2} = \frac{1}{2} \sum_i \Omega_i (1 + 3w_i)$

- ► At late times for flat universe
 - $q \simeq \frac{1}{2}(1 + 3w_{DE}\Omega_{DE})$

• $w_{DE} < -rac{1}{3} \, \Omega_{DE}^{-1}$ q < 0 acc. exp

Dark Energy

David Polarski

Nhy Dark Energy?

Basics

Cosmological constant Λ

Quintessence

Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

Outlook

◆□▶ ◆□▼ ◆ □ ▼ ▲ □ ▼ ◆ □ ▼

 $\frac{p_i}{\rho_i}$

•
$$\Omega_i = \frac{\rho_i}{\rho_{cr}}$$
 $H^2 \equiv \frac{8\pi G}{3} \rho_{cr}$ $w_i \equiv$
 $\Omega_k = -\frac{k}{a^2 H^2}$ $k = 0, \pm 1$
• $\left(\frac{\dot{a}}{a}\right)^2 \equiv H^2 = H^2 \left(\sum_i \Omega_i + \Omega_k\right)$
 $q \equiv -\frac{\ddot{a}}{aH^2} = \frac{1}{2} \sum_i \Omega_i (1 + 3w_i)$

- At late times for flat universe $q \simeq \frac{1}{2}(1+3w_{DE}\Omega_{DE})$
- $W_{DE} < -\frac{1}{3} \Omega_{DF}^{-1}$ q < 0acc. exp.

 $\frac{p_i}{\rho_i}$

Dark Energy

David Polarski

Basics

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- Cosmological constant A: Remarkable simplicity! "...My greatest blunder..." A. Einstein
- Conceptual problem: Λ ~ 10⁻¹²²I⁻²_{Pl}
- Some observational problems:

Achilles' heel: w_∧ = −1 and ρ_∧ strictly constant

Prominent contenders have dynamical w_{DE}(z)!!

Dark Energy

David Polarski

Nhy Dark Energy?

Basics

 $\begin{array}{c} Cosmological \\ constant \ \Lambda \end{array}$

Quintessence

Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

Outlook

- Cosmological constant A: Remarkable simplicity! "...My greatest blunder..." A. Einstein
- Conceptual problem: $\Lambda \sim 10^{-122} I_{Pl}^{-2}$
- Some observational problems:

• Achilles' heel: $w_{\Lambda} = -1$ and ρ_{Λ} strictly constant

Prominent contenders have dynamical w_{DE}(z)!!

Dark Energy

David Polarski

Nhy Dark Energy?

Basics

Cosmological constant Λ

Quintessence

Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

Outlook

・ロト・日本・山田・山田・

- Cosmological constant A: Remarkable simplicity! "...My greatest blunder..." A. Einstein
- Conceptual problem: $\Lambda \sim 10^{-122} I_{Pl}^{-2}$
- Some observational problems:

• Achilles' heel: $w_{\Lambda} = -1$ and ρ_{Λ} strictly constant

Prominent contenders have dynamical w_{DE}(z)!!

Dark Energy

David Polarski

Nhy Dark Energy?

Basics

 $\begin{array}{c} Cosmological \\ constant \ \Lambda \end{array}$

Quintessence

Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

Outlook

・ロト・日本・山田・山田・

- Cosmological constant A: Remarkable simplicity! "...My greatest blunder..." A. Einstein
- Conceptual problem: $\Lambda \sim 10^{-122} I_{Pl}^{-2}$
- Some observational problems:

• Achilles' heel: $w_{\Lambda} = -1$ and ρ_{Λ} strictly constant

• Prominent contenders have dynamical $w_{DE}(z)$!!

Dark Energy

David Polarski

Nhy Dark Energy?

Basics

 $\begin{array}{c} Cosmological \\ constant \ \Lambda \end{array}$

Quintessence

Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

Outlook

・ロト・日本・山田・山田・

- Cosmological constant A: Remarkable simplicity! "...My greatest blunder..." A. Einstein
- Conceptual problem: $\Lambda \sim 10^{-122} I_{Pl}^{-2}$
- Some observational problems:

- Achilles' heel: $w_{\Lambda} = -1$ and ρ_{Λ} strictly constant
- Prominent contenders have dynamical w_{DE}(z)!!

Dark Energy

David Polarski

Why Dark Energy?

Basics

 $\begin{array}{c} Cosmological \\ constant \ \Lambda \end{array}$

Quintessence

Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

Quintessence: (minimally coupled) scalar field φ(t), so successful in inflationary models

$$\rho_{\phi} = \frac{1}{2}\dot{\phi}^2 + V(\phi)$$
$$p_{\phi} = \frac{1}{2}\dot{\phi}^2 - V(\phi)$$

$$w_{\phi} = \frac{p_{\phi}}{\rho_{\phi}} = \frac{\dot{\phi}^2 - 2V}{\dot{\phi}^2 + 2V}$$

$$-1 \le w_{\phi} \le 1 \Leftrightarrow \rho_{\phi} + p_{\phi} \ge 0$$

No phantom!

Dark Energy

David Polarski

Nhy Dark Energy?

Basics

Cosmological constant Λ

Quintessence

Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

Outlook

▲□▶▲□▶▲□▶▲□▶ □ ● ●

 $\blacktriangleright L = \frac{1}{16\pi G_*} \Big(F(\Phi) R - Z \partial_\mu \Phi \partial^\mu \Phi - 2U(\Phi) \Big) + L_m(g_{\mu\nu})$

$$F(\Phi) = \Phi$$
 $Z(\Phi) = \frac{\omega_{BD}(\Phi)}{\Phi}$

Another choice

 $F(\Phi) = arbitrary$

 $c = 1 \Leftrightarrow \omega_{BD} > 0$

$$\omega_{BD} = \frac{F}{(dF/d\Phi)^2} > -\frac{3}{2}$$

 $\omega_{BD,0} > 4 \times 10^4$

$$V = -G_{\rm eff} \, \frac{M_1 \, M_2}{r}$$

massless Φ field

$$G_{\rm eff} = G_N \left(1 + \frac{1}{2\omega_{BD} + 3} \right)$$

 $\bullet \qquad G_{\rm eff,0} \simeq G_{N,0}$

・ロト・日本・山田・山田・

Dark Energy

David Polarski

Nhy Dark Energy?

Basics

Cosmologica constant Λ

Quintessence

Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

$$\blacktriangleright L = \frac{1}{16\pi G_*} \Big(F(\Phi) R - Z \partial_\mu \Phi \partial^\mu \Phi - 2U(\Phi) \Big) + L_m(g_{\mu\nu})$$

$$F(\Phi) = \Phi$$
 $Z(\Phi) = \frac{\omega_{BD}(\Phi)}{\Phi}$

Another choice

$$F(\Phi) = arbitrary$$
 $Z = 1 \Leftrightarrow \omega_{BD} > 0$

$$\omega_{BD} = \frac{F}{(dF/d\Phi)^2} > -\frac{3}{2} \qquad \omega_{BD,0} > 4 \times 10^4$$
$$V = -G_{\text{eff}} \frac{M_1 M_2}{r} \qquad \text{massless } \Phi \text{ field}$$
$$G_{\text{eff}} = G_N \left(1 + \frac{1}{2\omega_{BD} + 3}\right) \qquad G_N = \frac{G_*}{F}$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● ● ●

Dark Energy

David Polarski

Why Dark Energy?

Basics

Cosmological constant Λ

Quintessence

Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

$$\blacktriangleright L = \frac{1}{16\pi G_*} \left(F(\Phi) R - Z \partial_\mu \Phi \partial^\mu \Phi - 2U(\Phi) \right) + L_m(g_{\mu\nu})$$

$$F(\Phi) = \Phi$$
 $Z(\Phi) = \frac{\omega_{BD}(\Phi)}{\Phi}$

Another choice

$$F(\Phi) = arbitrary$$
 $Z = 1 \Leftrightarrow \omega_{BD} > 0$

$$\omega_{BD} = \frac{F}{(dF/d\Phi)^2} > -\frac{3}{2} \qquad \omega_{BD,0} > 4 \times 10^4$$
$$V = -G_{\text{eff}} \frac{M_1 M_2}{r} \qquad \text{massless } \Phi \text{ field}$$
$$G_{\text{eff}} = G_N \left(1 + \frac{1}{2\omega_{BD} + 3}\right) \qquad G_N = \frac{G_*}{F}$$

 $\bullet \qquad G_{\rm eff,0} \simeq G_{N,0}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへで

Dark Energy David Polarski

Scalar-tensor DE models

$$\blacktriangleright L = \frac{1}{16\pi G_*} \Big(F(\Phi) R - Z \partial_\mu \Phi \partial^\mu \Phi - 2U(\Phi) \Big) + L_m(g_{\mu\nu})$$

$$F(\Phi) = \Phi$$
 $Z(\Phi) = \frac{\omega_{BD}(\Phi)}{\Phi}$

Another choice

$$F(\Phi) = ext{arbitrary}$$
 $Z = 1 \Leftrightarrow \omega_{BD} > 0$

$$\omega_{BD} = \frac{F}{(dF/d\Phi)^2} > -\frac{3}{2} \qquad \qquad \omega_{BD,0} > 4 \times 10^4$$
$$V = -G_{\text{eff}} \frac{M_1 M_2}{r} \qquad \qquad \text{massless } \Phi \text{ field}$$
$$G_{\text{eff}} = G_N \left(1 + \frac{1}{2\omega_{BD} + 3}\right) \qquad \qquad G_N = \frac{G_*}{F}$$

 $\bullet \qquad G_{\rm eff,0} \simeq G_{\rm N,0}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへで

Dark Energy David Polarski

Scalar-tensor DE models

$$SFH^2 = 8\pi G_* \rho_m + \frac{\dot{\Phi}^2}{2} + U - 3H\dot{F}$$
$$-2F\dot{H} = 8\pi G_* \rho_m + \dot{\Phi}^2 + \ddot{F} - H\dot{F}$$

Define ρ_{DE} and p_{DE} :

$$3\left(H^{2}+\frac{k}{a^{2}}\right) = 8\pi G_{N,0}\left(\rho_{m}+\rho_{DE}\right)$$
$$-2\left(\dot{H}-\frac{k}{a^{2}}\right) = 8\pi G_{N,0}\left(\rho_{m}+\rho_{DE}+\rho_{DE}\right)$$

►
$$h^2(z) = \Omega_{m,0} (1+z)^3 + \Omega_{DE,0} f(z) + \Omega_{k,0} (1+z)^2$$

 $f(z) = \exp\left[3\int_0^z dz' \, \frac{1+w_{DE}(z')}{1+z'}\right]$

Dark Energy

David Polarski

Nhy Dark Energy?

Basics

Cosmological constant Λ

Quintessence

Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

Outlook

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへで

$$SFH^2 = 8\pi G_* \rho_m + \frac{\dot{\Phi}^2}{2} + U - 3H\dot{F}$$
$$-2F\dot{H} = 8\pi G_* \rho_m + \dot{\Phi}^2 + \ddot{F} - H\dot{F}$$

Define ρ_{DE} and p_{DE} :

$$3\left(H^{2}+\frac{k}{a^{2}}\right) = 8\pi G_{N,0}\left(\rho_{m}+\rho_{DE}\right)$$
$$-2\left(\dot{H}-\frac{k}{a^{2}}\right) = 8\pi G_{N,0}\left(\rho_{m}+\rho_{DE}+\rho_{DE}\right)$$

►
$$h^2(z) = \Omega_{m,0} (1+z)^3 + \Omega_{DE,0} f(z) + \Omega_{k,0} (1+z)^2$$

 $f(z) = \exp\left[3\int_0^z dz' \frac{1+w_{DE}(z')}{1+z'}\right]$

Dark Energy

David Polarski

Nhy Dark Energy?

Basics

Cosmological constant Λ

Quintessence

Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

Outlook

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへで

Growth of matter perturbations is modified:

$$\ddot{\delta}_m + 2H\dot{\delta}_m - 4\pi G_{\rm eff} \
ho_m \ \delta_m = 0$$

$$h^{2} \delta_{m}^{\prime\prime} + \left(\frac{(h^{2})^{\prime}}{2} - \frac{h^{2}}{1+z}\right) \delta_{m}^{\prime} = \frac{3}{2}(1+z)\frac{G_{\text{eff}}}{G} \Omega_{m,0} \delta_{m}$$

Perturbations $\delta_m(z)$ must be consistent with background expansion $(h(z) \equiv \frac{H(z)}{H_0})!$

0 1 1 1

Observation

Dark Energy David Polarski

Scalar-tensor DE models

Outlook

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

f(*R*) modified gravity DE models: *R* → *f*(*R*)
 Most popular models (*R* + ^{μ²}/_R) lead to unviable cosmic expansion with *a* ~ t²/₃ → *a* ~ t¹/₂

Some interesting viable f(R) models still remain: $f(R) = R - \lambda R_c f_1(x)$ $x \equiv R/R_c$ e.g. $R - \lambda R_c \left(1 - \left(1 + \frac{R^2}{R_c^2}\right)^{-n}\right), n, \lambda > 0 (n \ge 2)$

• In f(R) models $(F \equiv \frac{df(R)}{dr})$:

 $G_{\mathrm{eff}} = G_{\mathrm{eff}}(z,k) \Leftrightarrow V(r) = -rac{G_*}{F} rac{M_1 \ M_2}{r} \ \left(1 + rac{1}{3} \ e^{-mr}
ight)$

Dark Energy

David Polarski

Nhy Dark Energy?

Basics

Cosmological constant Λ

Quintessence

Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

Outlook

- *f*(*R*) modified gravity DE models: *R* → *f*(*R*)
 Most popular models (*R* + ^{μ²}/_R) lead to unviable cosmic expansion with *a* ~ *t*²/₃ → *a* ~ *t*¹/₂

Some interesting viable f(R) models still remain: $f(R) = R - \lambda R_c f_1(x)$ $x \equiv R/R_c$ e.g. $R - \lambda R_c \left(1 - \left(1 + \frac{R^2}{R_c^2}\right)^{-n}\right), n, \lambda > 0 (n \ge 2)$

• In f(R) models $(F \equiv \frac{df(R)}{dr})$:

 $G_{\mathrm{eff}} = G_{\mathrm{eff}}(z, \mathbf{k}) \Leftrightarrow V(r) = -\frac{G_*}{F} \frac{M_1 M_2}{r} \left(1 + \frac{1}{3} e^{-mr}\right)$

Dark Energy

David Polarski

Why Dark Energy?

Basics

Cosmological constant Λ

Quintessence

Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

Outlook

- *f*(*R*) modified gravity DE models: *R* → *f*(*R*)
 Most popular models (*R* + ^{μ²}/_R) lead to unviable cosmic expansion with *a* ~ *t*²/₃ → *a* ~ *t*¹/₂
- Some interesting viable f(R) models still remain: $f(R) = R - \lambda R_c f_1(x)$ $x \equiv R/R_c$ e.g. $R - \lambda R_c \left(1 - \left(1 + \frac{R^2}{R_c^2}\right)^{-n}\right)$, $n, \lambda > 0 (n \ge 2)$

• In f(R) models $(F \equiv \frac{df(R)}{dr})$:

 $G_{\mathrm{eff}} = G_{\mathrm{eff}}(z, \mathbf{k}) \Leftrightarrow V(r) = -\frac{G_*}{F} \frac{M_1 M_2}{r} \left(1 + \frac{1}{3} e^{-mr}\right)$

Dark Energy

David Polarski

Nhy Dark Energy?

Basics

Cosmological constant Λ

Quintessence

Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

Outlook

- *f*(*R*) modified gravity DE models: *R* → *f*(*R*)
 Most popular models (*R* + ^{μ²}/_R) lead to unviable cosmic expansion with *a* ~ *t*^{²/₃} → *a* ~ *t*^{¹/₂}
- Some interesting viable f(R) models still remain: $f(R) = R - \lambda R_c f_1(x)$ $x \equiv R/R_c$ e.g. $R - \lambda R_c \left(1 - \left(1 + \frac{R^2}{R_c^2}\right)^{-n}\right)$, $n, \lambda > 0 (n \ge 2)$

• In f(R) models $(F \equiv \frac{df(R)}{dr})$:

$$G_{\mathrm{eff}} = G_{\mathrm{eff}}(z, \mathbf{k}) \Leftrightarrow V(r) = -\frac{G_*}{F} \frac{M_1 M_2}{r} \left(1 + \frac{1}{3} e^{-mr}\right)$$

Dark Energy

David Polarski

Nhy Dark Energy?

Basics

Cosmologica constant Λ

Quintessence

Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

Outlook

$\blacktriangleright L = \frac{R}{16\pi G_*} - \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \, \partial_\nu \phi - V(\phi) + L_m \left[\Psi_m; A^2(\phi) \; g_{\mu\nu} \right]$

- ► $A^2 = e^{2\beta\phi/M_{PL}}$ $V = M^4 e^{(\frac{M}{\phi})^n}$ $M \ll \phi \ll M_{PL} \rightarrow V$ is like $\Lambda!$
- ► $G_{\text{eff}}(z,k) \Leftrightarrow V(r) = -G_* \frac{M_1 M_2}{r} (1 + 2 \beta^2 e^{-m_{\phi} r})$ m_{ϕ} is too large, no influence on cosmological scale
- Coupling to dark matter only?
 4, − 0 4, − 40

Interacting dark sector

David Polarski

Why Dark Energy?

Basics

Cosmological constant Λ

Quintessence

Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

Outlook

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Dark Energy David Polarski

$\blacktriangleright L = \frac{R}{16\pi G_*} - \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \, \partial_\nu \phi - V(\phi) + L_m \left[\Psi_m; A^2(\phi) \; g_{\mu\nu} \right]$

$$\blacktriangleright A^2 = e^{2\beta\phi/M_{PL}} \qquad \qquad \lor = M^4 e^{(\frac{M}{\phi})^n}$$

 $M \ll \phi \ll M_{PL} \rightarrow V$ is like Λ !

► $G_{\text{eff}}(z,k) \Leftrightarrow V(r) = -G_* \frac{M_1 M_2}{r} (1 + 2 \beta^2 e^{-m_{\phi} r})$ m_{ϕ} is too large, no influence on cosmological scale

Coupling to dark matter only?

 $A_b = 0$ $A_{dm} \neq 0$

Interacting dark sector

Basics

Cosmological constant Λ

Quintessence

Scalar-tensor DE models

Chameleon models

Growth function, growth index

Observations

Outlook

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Modified gravity models

$$\blacktriangleright L = \frac{R}{16\pi G_*} - \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \, \partial_\nu \phi - V(\phi) + L_m \left[\Psi_m; A^2(\phi) \; g_{\mu\nu} \right]$$

$$A^2 = e^{2\beta\phi/M_{PL}} \qquad V = M^4 e^{(\frac{M}{\phi})^n}$$

 $M \ll \phi \ll M_{PL} \rightarrow V$ is like Λ !

•
$$G_{\text{eff}}(z, k) \Leftrightarrow V(r) = -G_* \frac{M_1 M_2}{r} (1 + 2 \beta^2 e^{-m_{\phi} r})$$

 m_{ϕ} is too large, no influence on cosmological scales!

Coupling to dark matter only?

 $A_b = 0$ $A_{dm} \neq 0$

Interacting dark sector

David Polarski

Basics

Cosmological constant Λ

Quintessence

Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

Outlook

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ □ ◆

$$\blacktriangleright L = \frac{R}{16\pi G_*} - \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \ \partial_\nu \phi - V(\phi) + L_m \left[\Psi_m; A^2(\phi) \ g_{\mu\nu} \right]$$

►
$$A^2 = e^{2\beta\phi/M_{PL}}$$
 $V = M^4 e^{(\frac{M}{\phi})^n}$
 $M \ll \phi \ll M_{PL} \rightarrow V$ is like Λ !

•
$$G_{\text{eff}}(z, \mathbf{k}) \Leftrightarrow V(r) = -G_* \frac{M_1 M_2}{r} (1 + 2 \beta^2 e^{-m_{\phi} r})$$

 m_{ϕ} is too large, no influence on cosmological scales!

• Coupling to dark matter only?

$$A_b = 0$$
 $A_{dm} \neq 0$

Interacting dark sector

David Polarski

Nhy Dark Energy?

Basics

Cosmological constant Λ

Quintessence

Scalar-tensor DE models

Chameleon models

Growth function, growth index

Observations

Outlook

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Modified gravity models

• Matter perturbations can be characterized by the "growth function" $f = \frac{d \ln \delta}{d \ln a} \equiv \frac{d \ln \delta}{dx}$

$$\frac{df}{dx} + f^2 + \frac{1}{2} \left(1 - 3 w_{\text{eff}}\right) f = \frac{3}{2} \frac{G_{\text{eff}}}{G} \Omega_m$$

A convenient "parameterization" f = Ω^γ_m.
 Actually

$$\delta_m(z, \mathbf{k}) \Leftrightarrow \gamma = \gamma(z, \mathbf{k})$$

In ΛCDM: γ ≃ 0.55
 It can be very different in modified gravity models

Dark Energy

David Polarski

Nhy Dark Energy?

Basics

Cosmologica constant Λ

Quintessence

Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

Outlook

・ロト・西ト・西ト・日・ ウヘぐ

► Matter perturbations can be characterized by the "growth function" $f = \frac{d \ln \delta}{d \ln a} \equiv \frac{d \ln \delta}{dx}$

$$\frac{df}{dx} + f^2 + \frac{1}{2} (1 - 3 w_{\rm eff}) f = \frac{3}{2} \frac{G_{\rm eff}}{G} \Omega_m$$

• A convenient "parameterization" $f = \Omega_m^{\gamma}$. Actually

$$\delta_m(z, \mathbf{k}) \Leftrightarrow \gamma = \gamma(z, \mathbf{k})$$

In ΛCDM: γ ≃ 0.55
 It can be very different in modified gravity models

・ロト・西ト・西ト・日・ ウヘぐ

Dark Energy

David Polarski

Nhy Dark Energy?

Basics

Cosmological constant Λ

Quintessence

Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

► Matter perturbations can be characterized by the "growth function" $f = \frac{d \ln \delta}{d \ln a} \equiv \frac{d \ln \delta}{dx}$

$$\frac{df}{dx} + f^2 + \frac{1}{2} (1 - 3 w_{\rm eff}) f = \frac{3}{2} \frac{G_{\rm eff}}{G} \Omega_m$$

A convenient "parameterization" f = Ω^γ_m.
 Actually

$$\delta_m(z, \mathbf{k}) \Leftrightarrow \gamma = \gamma(z, \mathbf{k})$$

In ΛCDM: γ ≃ 0.55
 It can be very different in modified gravity models!

・ロト・西ト・西ト・日・ ウヘぐ

Dark Energy

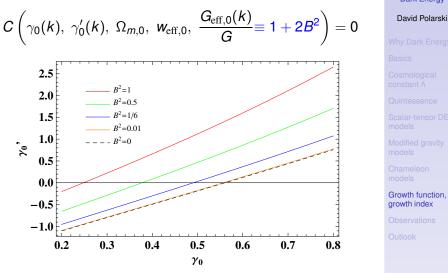
David Polarski

Nhy Dark Energy?

Basics

Cosmological constant Λ

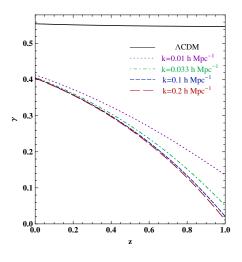
Quintessence


Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index


Observations

 $\Omega_{m,0} = 0.29$ $w_{DE,0} = -1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

 $f(R) = R - \lambda R_c \frac{x^{2n}}{x^{2n} + 1} \qquad x \equiv \frac{R}{R_c}$

 $n = 1, \ \lambda = 1.55$

Dark Energy

David Polarski

Why Dark Energy?

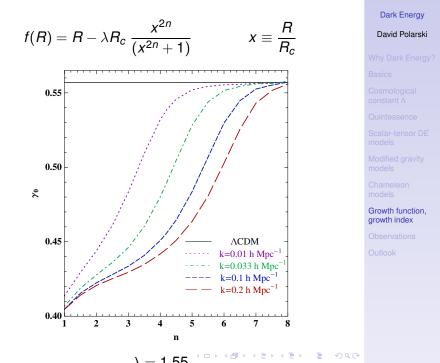
Basics

Cosmological constant Λ

Quintessence

Scalar-tensor DE models

Modified gravity models


Chameleon models

Growth function, growth index

Observations

Outlook

▲□▶▲□▶▲□▶▲□▶ □ ● ●

We need complementary probes: Supernovae Clusters Weak lensing **Baryon Acoustic Oscillations Cosmic Microwave Background** Gamma Ray Bursts? Gravitational waves?

Dark Energy

David Polarski

Nhy Dark Energy?

Basics

Cosmologica constant Λ

Quintessence

Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

Outlook

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

DE paradigm: something accelerates the expansion rate and fills the universe

- Λ or not Λ ?
- ▶ What is *w*(*z*) and the underlying model?
- General Relativity or beyond ?
- When we have very precise data, which model from each family will survive?

Dark Energy

David Polarski

Nhy Dark Energy?

Basics

Cosmological constant Λ

Quintessence

Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

Outlook

▲□▶▲□▶▲□▶▲□▶ ■ のQの

DE paradigm: something accelerates the expansion rate and fills the universe

- Λ or not Λ ?
- What is w(z) and the underlying model?
- General Relativity or beyond ?
- When we have very precise data, which model from each family will survive?

Dark Energy

David Polarski

Why Dark Energy?

Basics

Cosmological constant Λ

Quintessence

Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

Outlook

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

- DE paradigm: something accelerates the expansion rate and fills the universe
- Λ or not Λ ?
- What is w(z) and the underlying model?
- General Relativity or beyond ?
- When we have very precise data, which model from each family will survive?

David Polarski

Why Dark Energy?

Basics

Cosmological constant Λ

Quintessence

Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

Outlook

▲□▶▲□▶▲□▶▲□▶ □ ● ●

- DE paradigm: something accelerates the expansion rate and fills the universe
- Λ or not Λ ?
- What is w(z) and the underlying model?
- General Relativity or beyond ?
- When we have very precise data, which model from each family will survive?

David Polarski

Why Dark Energy?

Basics

Cosmological constant Λ

Quintessence

Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

Outlook

▲□▶▲□▶▲□▶▲□▶ □ ● ●

- DE paradigm: something accelerates the expansion rate and fills the universe
- Λ or not Λ ?
- ▶ What is *w*(*z*) and the underlying model?
- General Relativity or beyond ?
- When we have very precise data, which model from each family will survive?

David Polarski

Nhy Dark Energy?

Basics

Cosmological constant Λ

Quintessence

Scalar-tensor DE models

Modified gravity models

Chameleon models

Growth function, growth index

Observations

Outlook

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ● 臣 ● のへぐ