A model independent null test on the cosmological constant

Savvas Nesseris

Niels Bohr International Academy - DISCOVERY Center,
Copenhagen, Denmark
S.N., A. Shafieloo, arxiv: 1004.0960

Main points of the talk

- Observational status quo
- The Om statistic (null test)
- The Genetic Algorithms (GAs)
- Results

The Standard Cosmological model

Einstein equations: $\quad R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda g_{\mu \nu}=\frac{8 \pi G}{c^{4}} T_{\mu \nu}$

$$
G_{\mu \nu} \quad \text { Cosmological Constant } \quad T_{\nu}^{\mu}=P g_{\nu}^{\mu}+(\rho+P) U^{\mu} U_{\nu}
$$

Robertson-Walker metric: $\quad d s^{2}=c^{2} d t^{2}-\alpha(t)^{2}\left(\frac{d r^{2}}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin (\theta)^{2} d \phi^{2}\right)\right)$

Friedmann equations: $H^{2}(\alpha)=\left(\frac{\dot{\alpha}}{\alpha}\right)^{2}=\frac{8 \pi G}{3} \rho(\alpha)-\frac{k}{\alpha^{2}}$

$$
\frac{\ddot{\alpha}}{\alpha}=-\frac{4 \pi G}{3}(\rho(\alpha)+P(\alpha))
$$

$$
k=-1
$$

Continuity:

$$
\nabla_{\nu} T^{\mu \nu}=0 \Longleftrightarrow \dot{\rho}+3 H(\rho+P)=0
$$

(from Bianchi identities)

The Standard Cosmological model

Hubble (1929): Universe is expanding

Riess et al. (1998): ... and actually is accelerating from supernovae type la
$2^{\text {nd }}$ Friedmann equation: $\frac{\ddot{\alpha}}{\alpha}=-\frac{4 \pi G}{3}(\rho(\alpha)+3 P(\alpha)) \quad \Longrightarrow P<-\frac{\rho}{3}$

Equation of state

$$
P=w \rho-\left[\begin{array}{lll}
w=0 & \text { Non-relativistic matter } & P \ll \rho \\
w=\frac{1}{3} & \text { Radiation } & P=\frac{1}{3} \rho
\end{array}\right.
$$

$$
P<-\frac{\rho}{3} \quad \square \quad w<-\frac{1}{3}
$$

Known kinds of matter cannot explain the accelerated expansion of the universe!

Type Ia supernovae

Type Ia supernovae

The amount of light from the explosion that reaches an observer is the apparent luminosity l:

$$
l=\frac{L}{4 \pi d_{L}^{2}}
$$

A measure of the brightness of the Snla is the apparent magnitude $\mathrm{m}: \quad m=-2.5 \log _{10}\left[l\left(d_{L}\right)\right]$ and is related to the lum. distance through:

$$
m=M+5 \log _{10} \frac{d_{L}}{M p c}+25 \quad \text { absolute magnitude } \longrightarrow M=m\left(d_{L}=10 p c\right)
$$

Type Ia supernovae

- SnIa data are given in terms of the distance modulus:

$$
\mu_{o b s}\left(z_{i}\right) \equiv m_{o b s}\left(z_{i}\right)-M
$$

- DE is described by $\mathrm{w}(\mathrm{z})$

$$
w(z) \equiv \frac{p}{\rho}
$$

$$
\begin{aligned}
& w(z)=-1+\frac{1}{3}(1+z) \frac{d \ln \left(\delta H(z)^{2}\right)}{d \ln z} \\
& \delta H(z)^{2}=H(z)^{2} / H_{0}^{2}-\Omega_{0 \mathrm{~m}}(1+z)^{3}
\end{aligned}
$$

- Theoretical prediction:

$$
\begin{aligned}
& D_{L}(z)=(1+z) \int_{0}^{z} d z^{\prime} \frac{H_{0}}{H\left(z^{\prime} ; \Omega_{0 \mathrm{~m}}, w_{0}, w_{1}\right)} \\
& \mu_{\text {th }}\left(z_{i}\right) \equiv m_{\text {th }}\left(z_{i}\right)-M=5 \log _{10}\left(D_{L}(z)\right)+\mu_{0} \\
& \mu_{0}=42.38-5 \log _{10} h .
\end{aligned}
$$

- Minimize to find the best fit parameters:
$\chi_{S n I a}^{2}\left(\Omega_{0 \mathrm{~m}}, w_{0}, w_{1}\right)=\sum_{i=1}^{N} \frac{\left(\mu_{o b s}\left(z_{i}\right)-\mu_{\text {th }}\left(z_{i}\right)\right)^{2}}{\sigma_{\mu i}^{2}}$

The status quo

Currently, the supernovae Ia data seem to allow for $\mathrm{w}<-1$!

w
-1 (fixed)
$-1.114_{-0.112}^{+0.098}$
$-0.997_{-0.055}^{+0.050}$
$-1.009_{-0.054}^{+0.050}$
-1 (fixed)
$-1.026_{-0.059}^{+0.055}$

Union2 dataset, arXiv:1004.1711

The current status

However, there are a few problems:

- Phantom fields ($\mathrm{w}<-1$) violate the

Dominant Energy Condition
$\rho>0 \& \rho+P \geq 0$

- Crossing w=-1 causes severe gravitational instabilities in the dark For adiabatic perturbations:: $c_{s}^{2}(a)=w(a)-a \frac{w^{\prime}(a)}{3(1+w(a))}$ energy sector A. Vikman 2005, astro-ph/0407107
- Stable wormholes \longrightarrow time-travel?
I.D. Novikov et al., 0911.4456

Test for the Cosmological Constant necessary!!!

The Om statistic

Definition:

$$
O m(x) \equiv \frac{h^{2}(x)-1}{x^{3}-1}, \quad x=1+z \quad h(x)=H(x) / H_{0}
$$

Example:

$$
h^{2}(x)=\Omega_{0 m} x^{3}+\left(1-\Omega_{0 m}\right) x^{\alpha} \quad \alpha=3(1+w)
$$

V. Sahni, A. Shafieloo and A. A. Starobinsky, Phys. Rev. D 78, 103502 (2008) [arXiv:0807.3548 [astro-ph]].

The Om statistic

$$
O m(x) \equiv \frac{h^{2}(x)-1}{x^{3}-1}, \quad x=1+z \quad h(x)=H(x) / H_{0}
$$

Note: Using a model for $\mathrm{h}(\mathrm{x})$ introduces bias into the results
Strategy:

- Fit the data with model independent method (Genetic Algorithms)
- Reconstruct $\operatorname{Om}(\mathrm{z})$ and test for deviations from w=-1

Genetic Algorithms

- The solution to a problem is searched for in a stochastic way by evolving a population of candidate solutions (chromosomes) towards an optimal
- This approach is olfion inspired, as the offspring emerge through a series of apl ently random mutations and combinations betwee different individuals.
N. Thealgorithm is most efficient when the varameter space is very large, too complex or not well understood (like in the study of onfitational waves, weak lensing etc).

Genetic Algorithms: Outline

Genetic Algorithms: Selection

In GAs there are two possible methods:

1) Roulette wheel selection (the selection probability is proportional to the fitness)

2) Tournament selection (find best individual)

Genetic Algorithms: Reproduction

Reproduction can be done in two ways:

1) Crossover:

$$
\mu_{G A, 1}(z)=\ln (z) \quad \mu_{G A, 2}(z)=-1+z+z^{2}
$$

 offspring

$$
\begin{aligned}
\mu_{G A, 1}(z) \oplus \mu_{G A, 2}(z) & \rightarrow\left(\bar{\mu}_{G A, 1}(z), \bar{\mu}_{G A, 2}(z), \bar{\mu}_{G A, 3}(z)\right) \\
& =\left(\ln \left(z^{2}\right),-1+\ln \left(z^{2}\right),-1+\ln (z)\right)
\end{aligned}
$$

2) Mutation:

$$
\bar{\mu}_{G A, 3}(z)=-1+\ln (z) \rightarrow-1+\ln \left(z^{3}\right)
$$

Genetic Algorithms: Example

Genetic Algorithms: Strategy

Strategy:

- Apply the GA to the original data and obtain a solution $\mu_{G A}(z)$
- Generate a number of synthetic datasets by drawing points with replacement (bootstrap Monte-Carlo)
- Run the GA on the synthetic datasets.
- Obtain values for the Om statistic for each dataset
- The 95% error can be found by taking the 2.5 and 97.5 percentiles of the bootstrap distribution

Results

S.N., A. Shafieloo, arxiv: 1004.0960

$$
\begin{array}{|cc|}
\hline x, x^{2} \text { etc } & \ln (x) \\
\sin (x), \cos (x) & e^{x} \\
\hline
\end{array}
$$

Case 1 Basic grammar	$\chi_{\min }^{2}=465.19$
Case 2 Basic grammar + Legendre polyn.	$\chi_{\min }^{2}=477.87$
Case 3 Only polyn. in grammar (3000 gen.)	$\chi_{\text {min }}^{2}=468.19$
Case 4 Only polyn. in grammar $(6000$ gen.)	$\chi_{\min }^{2}=462.56$
Λ CDM $H(z)^{2}=H_{0}^{2}\left(\Omega_{m}(1+z)^{3}+1-\Omega_{m}\right)$	$\chi_{\min }^{2}=465.51$

Results

The Om statistic
$+$
2σ error region:

Histogram of the
Bootstrap distribution:

Conclusions - Outlook

- Presented anull test of the Cosmological Constant
- Used the Genetic Algorithms as a mddel inde endent reconstruction method for $\mathbf{H}(\mathrm{z})$
- Results in agreement with \triangle CDIM at the 20 level

Open issues:
Use the newer SnIa sets (smaller errors - possible to discriminate?)
Compare all model independent methods (in progress SN, Y. Wang)

