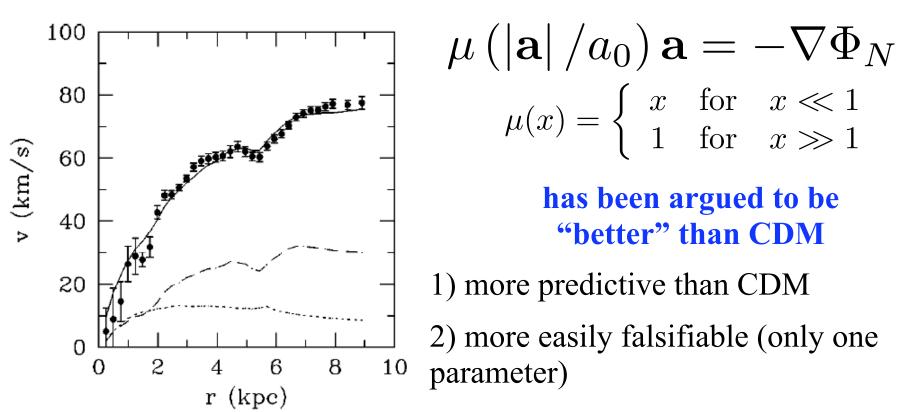
Black Holes & Neutron Stars in Tensor-Vector-Scalar Theory

Paul D. Lasky

Hajime Sotani & Dimitrios Giannios

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation Eberhard Karls Universität Tübingen


Modified Newtonian Dynamics (MoND)

Milgrom (1983); Bekenstein & Milgrom (1984)

Phenomenologically based on observations of spiral galaxies:

1) Asymptotically flat rotation curves

2) Tully-Fisher law (relationship between rotation velocity & luminosity in spiral galaxies)

Paul D. Lasky

Modified Newtonian Dynamics (MoND)

Milgrom (1983); Bekenstein & Milgrom (1984)

Not a covariant theory;

Good as a toy-model... need relativistic theory

Bekenstein (2004) "Relativistic gravitation theory for the modified Newtonian dynamics paradigm"

Tensor-Vector-Scalar theory (TeVeS)

Paul D. Lasky

Bekenstein's TeVeS Theory

Bekenstein (2004) - Relativistic version of MoND

Weak Acceleration Limit

TeVeS = MoND

Newtonian Limit

Parametrized Post-Newtonian (PPN) coefficients agree with all solar system tests.

Cosmological Scales

Strong Lensing LSS, CMB

What can we learn about TeVeS in strong gravitational fields?

But first, we need to understand more about the theory

<u>A TeVeS Primer</u>

$$\label{eq:star} \begin{split} \textbf{TeVeS} &= \textbf{Tensor} - \textbf{Vector} - \textbf{Scalar} \\ S_{\text{tot}} &= S_g + \mathcal{K}S_v + kS_s + S_{\text{mat}} \\ \textbf{Vector-field Coupling} \\ \textbf{Constant (i.e. strength} \\ \textbf{of the vector field)} \end{split} \\ \end{split}$$

Scalar field ==> extra potential to gravitational field Vector field ==> required light bending properties Reduces to GR when $\mathcal{K} = k = 0$

Paul D. Lasky

<u>A TeVeS Primer</u>

Tensor, vector and scalar fields combine to give physical metric...

Clocks & Rulers measured by physical metric

$$\tilde{g}_{\mu\nu} = e^{-2\varphi} \left(g_{\mu\nu} + \mathcal{U}_{\mu}\mathcal{U}_{\nu} \right) - e^{2\varphi}\mathcal{U}_{\mu}\mathcal{U}_{\nu}$$

 $\begin{array}{c} {\color{red} {\rm Stretch}}\\ {\color{red} {\rm Shrink}}\\ {\color{red} {\rm Einstein metric in directions}} & {\color{red} {\rm orthogonal}}\\ {\color{red} {\rm parallel}}\\ {\color{red} {\rm to }} \ \mathcal{U}^{\mu} \ {\color{red} {\rm by e}}^{-2\varphi} \end{array}$

put in "by hand" to make sure extra lensing is required in accordance with observations

Solving TeVeS field equations in Strong-Field regime

Giannios (2005)

:- "Schwarzschild" solution

- Sagi & Bekenstein (2008) :- "Reisner-Nordstrom"
- PL, Sotani & Giannios (2008) :- "TOV" solution for perfect fluid i.e. neutron star models

Using observations of neutron star masses, we put constraints on \mathcal{K} and φ_c .

And THEN.....

Seifert (2007):- Schwarzschild-TeVeS unstable

Contaldi et al. (2008):- Evolving vector field causes caustics

Sagi (2009):- Superluminal propagation of scalar waves

Conclusion: original TeVeS theory does not work!!

And THEN.....

Seifert (2007):- Schwarzschild-TeVeS unstable

Contaldi et al. (2008):- Evolving vector field causes caustics

Sagi (2009):- Superluminal propagation of scalar waves

Conclusion: original TeVeS theory does not work!!

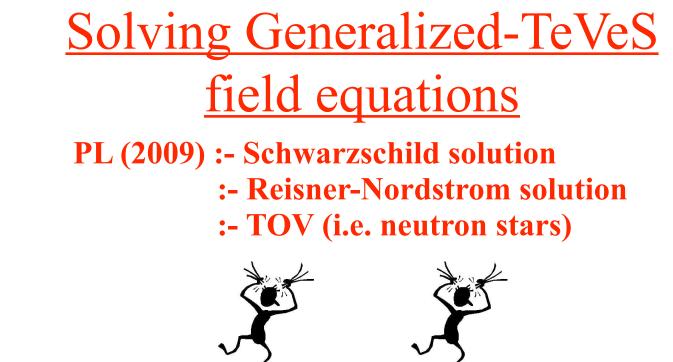
Skordis (2008), Contaldi et al. (2008) & Sagi (2009)

"Generalized-TeVeS"

Fixes aforementioned problems by allowing for more general dynamics of the vector field

Paul D. Lasky

A Generalized TeVeS Primer

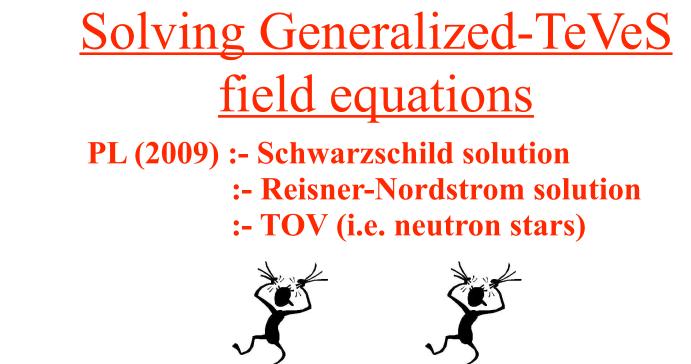

 $\mathbf{TeVeS} = \mathbf{Tensor} - \mathbf{Vector} - \mathbf{Scalar}$ $S_{\text{tot}} = S_g + KS_K + K_+S_{K_+} + K_2S_{K_2} + K_4S_{K_4} + \mathbf{kS_s} + S_{\text{mat}}$

"... most general kinetic term for A, which is diffeomorphism invariant, quadratic in derivatives and ... consistent with $A^2 = -1$ constraint"*

Reduces to original TeVeS when

 $K_{+} = K_{2} = K_{4} = 0$

* Contaldi et al. (2008)


1) Can only measure one certain combination of vector-field coupling constants using static, spherically symmetric spacetimes.

2) BHs and NSs look **EXACTLY** the same in TeVeS and Gen-TeVeS (providing only using EM radiation);

 $K_2 = 0 \& K + K_+ - K_4 = \mathcal{K}$

Paul D. Lasky

08/06/2010 - NEB XIV

3) All results of Giannios (2005), Sagi & Bekenstein (2008), PL, Sotani & Giannios (2008) and Sotani (2009) for TeVeS also hold for Gen-TeVeS.

4) Result is <u>NOT</u> generalizable. Easy to prove that rotating or time dependent spacetimes will look different in two theories $(K_2 \neq 0)$

What do **black holes** look like in Generalized TeVeS?

Assumptions:

- \checkmark Static and spherically symmetric
- ✓ Only non-zero term of vector field is time component
 - ✓ Only subset of possible solutions
 - $\checkmark \quad \text{Effect of radial component has not been studied}$

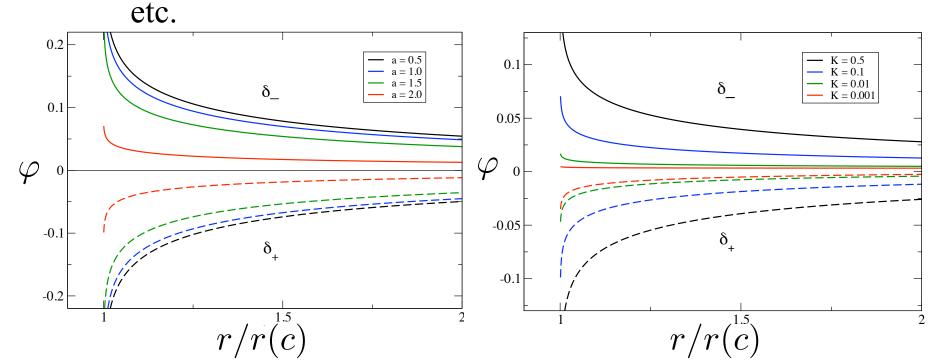
Vacuum Spacetimes:

black holes and naked singularities

Giannios (2005), Sagi & Bekenstein (2008), PL (in prep.)

$$d\tilde{s}^{2} = \left(\frac{1 - r_{c}/r}{1 + r_{c}/r}\right)^{a} dt^{2} + \left(1 + \frac{r_{c}}{r}\right)^{2+a} \left(1 - \frac{r_{c}}{r}\right)^{2-a} \left(dr^{2} + r^{2}d\Omega^{2}\right)$$

- ✓ 'a' is extra free parameter relating to "scalar mass" of the black hole.
- ✓ Solution is actually identical to a subset of the Brans-Dicke type I solutions
 - ✓ a = 2 is only black hole solution identical to GR-Schwarzschild solution!
 - ✓ 0 < a < 2 and 2 < a < 4 are naked singularities
 - ✓ a > 4 have non-essential singularity, but divergent surface area.


Vacuum Spacetimes:

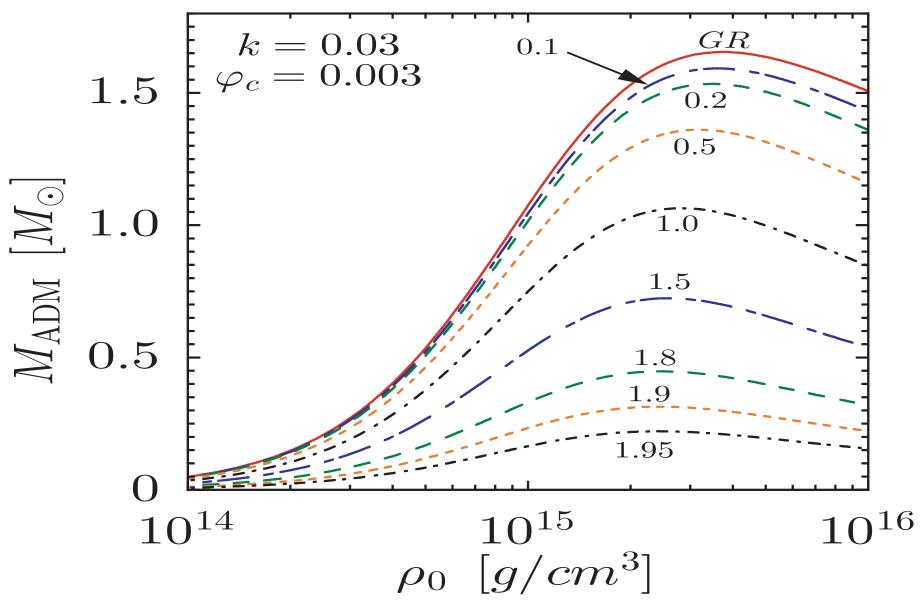
black holes and naked singularities

Giannios (2005), Sagi & Bekenstein (2008), PL (in prep.)

$$d\tilde{s}^{2} = \left(\frac{1 - r_{c}/r}{1 + r_{c}/r}\right)^{a} dt^{2} + \left(1 + \frac{r_{c}}{r}\right)^{2+a} \left(1 - \frac{r_{c}}{r}\right)^{2-a} \left(dr^{2} + r^{2}d\Omega^{2}\right)$$

Actually 2 "background" solutions which give same physical metric. These will give different perturbations,

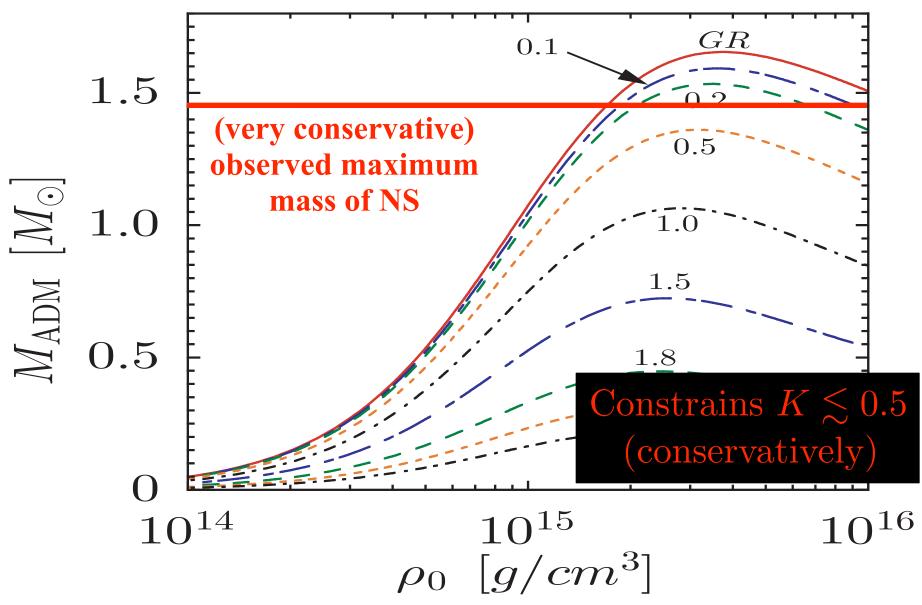
<u>What do neutron stars look like in</u> <u>Generalized TeVeS?</u>

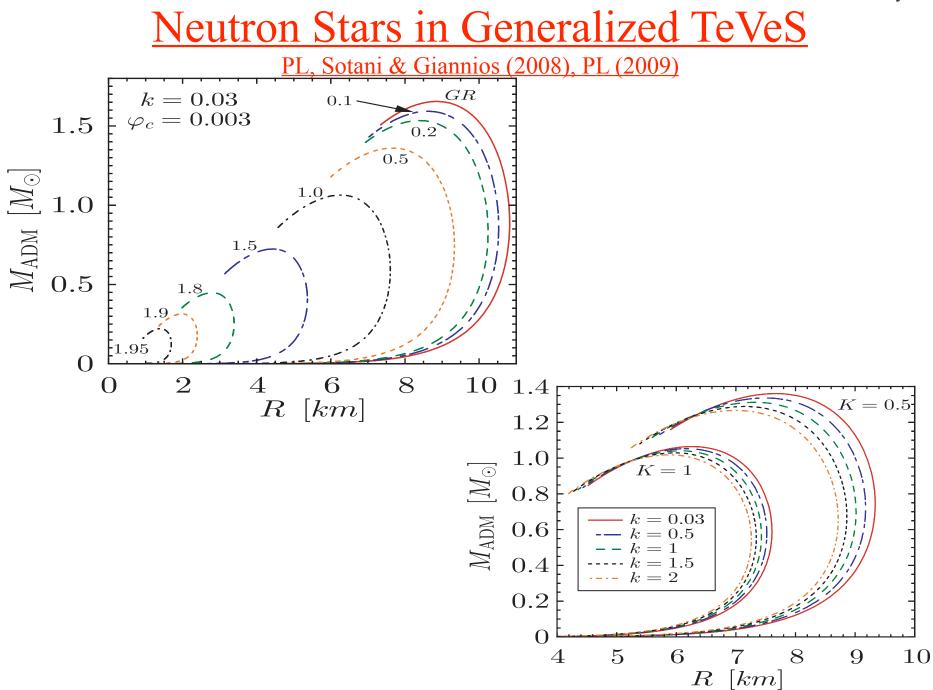

Assumptions:

- ✓ Static and spherically symmetric
- ✓ Only non-zero term of vector field is time component
 - ✓ Only subset of possible solutions
 - $\checkmark \quad \text{Effect of radial component has not been studied}$
- $\checkmark \quad \text{For Neutron star assumed perfect fluid}$

Paul D. Lasky

Neutron Stars in Generalized TeVeS


PL, Sotani & Giannios (2008), PL (2009)


Paul D. Lasky

Neutron Stars in Generalized TeVeS

PL, Sotani & Giannios (2008), PL (2009)

Paul D. Lasky

Conclusions

- ✓ Generalized TeVeS still a viable theory in the strong-field regime
- \checkmark Can utilise NS observations to restrict parameter space of theory
- ✓ Vacuum spacetimes can have different structure to GR, but also admit Schwarzschild as a solution.
- \checkmark Many open questions for vacuum spacetimes;
 - ✓ Does gravitational collapse lead to naked singularities or black holes?
 - ✓ Are such objects stable?
 - ✓ What is the structure of rotating BHs?
 - ✓ Many questions to do with gravitational wave emission
 - ✓ etc.

THANK YOU!