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Outline

General goal: explaining dark energy, testing gravity at large scales.
Notice:

I Many proposed modified gravity theories can be cast in the form of
scalar-tensor gravity (STG) - higher dimensions, branes, f (R), VSL

I “Attractor mechanism” - wide classes of STG cosmologies
dynamically converge to fixed points (Damour, Nordtvedt 1993).

Present work:

I Determine the conditions for attractive fixed points in STG
cosmology

I Find the general analytic form of solutions around these fixed points

Therefore can:

I Use these to confront observations (local weak field, expansion
history, growth of perturbations)

I Have a selection principle



Scalar-tensor gravity

Our starting point: “Brans-Dicke” parametrization, Jordan frame
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1

2κ2

∫
d4x
√
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]
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I Family of theories, each pair ω(Ψ) and V (Ψ) specifies a theory

I Variable gravitational “constant” 8πG = κ2

Ψ , assume 0 < Ψ <∞
I Assume positive energy denisty: 2ω(Ψ) + 3 ≥ 0, V (Ψ) ≥ 0

I Sm usual matter



Local weak field experiments (Solar System)

If V (Ψ) can be neglected, then
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“The limit of general relativity”, “Nordtvedt limit” (1970)

1

2ω + 3
→ 0 ,

dω
dΨ

(2ω + 3)3
→ 0 . (6)

(If V (Ψ) gives a contribution, then the PPN parameters get a correction
Olmo 2005, Perivolaropoulos 2009.)



Scalar-tensor cosmology

Flat (k = 0) FLRW, barotropic matter fluid p = wρ
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STG cosmology as a dynamical system

Phase space: {Ψ,Π = Ψ̇,H, ρ}, tangent of trajectories: (Ψ̇, Π̇, Ḣ, ρ̇)

Ψ̇ = Π , (11)
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ρ̇ = −3H(1 + w)ρ . (14)



STG cosmology phase space

The k = 0 trajectories lie on the 3-surface

H = − Π

2Ψ
±
√

(2ω(Ψ) + 3)
Π2

12Ψ2
+
κ2(ρ+ V (Ψ))

3Ψ
, (15)

.
Boundaries in the phase space:

I |H| → ∞, |ρ| → ∞, or |Ψ̇| → ∞ imply a spacetime curvature
singularity,

I Ψ→ 0 generally also a singularity (can not slip from “attractive” to
“repulsive” gravity),

I Ψ→∞ not a singularity, but gravitational “constant” κ2

Ψ vanishes,

I V →∞ or 2ω + 3→ 0 again a singularity,

I 1
2ω+3 → 0 turns out to be a singularity as well, unless Ψ̇ = Π→ 0.

JKS 2008



If potential dominates over matter density (V 6≡ 0, ρ ≡ 0)

Using (15) can eliminate H and obtain a 2-dimensional system:

Ψ̇ = Π (16)

Π̇ =

(
3

2Ψ
− 1

2ω(Ψ) + 3

dω

dΨ

)
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2κ2

2ω(Ψ) + 3

(
2V (Ψ)−Ψ

dV

dΨ

)
∓ 1

2Ψ

√
3(2ω(Ψ) + 3)Π2 + 12κ2ΨV (Ψ) Π . (17)

. Study the behavior of trajectories.



Fixed points (V 6≡ 0, ρ ≡ 0 case)

Fixed points (Ψ̇ = 0, Π̇ = 0) are of two types, given by:

Ψ• :
dV

dΨ

∣∣∣
Ψ•

Ψ• − 2V (Ψ•) = 0 , (18)

Ψ? :
1

2ω(Ψ?) + 3
= 0 ,

1

(2ω(Ψ?) + 3)2

dω

dΨ

∣∣∣
Ψ=Ψ?

6= 0, (19)

.
The properties of fixed points (node, focus, saddle; stable, unstable) and
the form of solutions around the fixed points are determined by the

eigenvalues, and these by ω(Ψ•,?), dω
dΨ |Ψ•,?

, V (Ψ•,?), dV
dΨ |Ψ•,?

, d2V
dΨ2 |Ψ•,?

JKS 2008.
.
Notice Ψ? is compatible with the “Nordtvedt limit”, i.e. the local weak
field experments.
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If matter density dominates over potential (ρ 6≡ 0, V ≡ 0)

Use new time variable dp ≡
∣∣∣H + Ψ̇

2Ψ

∣∣∣ dt, can eliminate H, to get

Ψ′ = Υ (20)

Υ′ = ±2ω(Ψ) + 3

8Ψ2
Υ3 +

6ω(Ψ) + 9− 4Ψ dω(Ψ)
dΨ

4Ψ(2ω(Ψ) + 3)
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2
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3Ψ

2ω(Ψ) + 3
.(21)

Fixed point (Ψ′ = 0,Υ′ = 0) in p-time corresponds to a fixed point
(Ψ̇ = 0, Π̇ = 0) in t-time, and is given by:

Ψ? :
1

2ω(Ψ?) + 3
= 0 ,

1

(2ω(Ψ?) + 3)2

dω

dΨ

∣∣∣
Ψ=Ψ?

6= 0, (22)

Again it is compatible with the “Nordtvedt limit”.



A more careful analysis of Ψ?

In the limit (Ψ?,Π?): (a) 1
2ω(Ψ)+3 → 0, (b) Ψ̇ ≡ Π→ 0 the equations

contain an indeterminacy (like y
x at the origin).

.
Let us focus around this point Ψ = Ψ? + x , Π = Π? + y = y and expand
in series

1

2ω(Ψ) + 3
=

1

2ω(Ψ?) + 3
+ A?x + ... ≈ A?x , (23)

(2ω(Ψ) + 3)Π2 =
y2

0 + A?x + ...
=

y2

A?x
(1 + O(x)) ≈ y2

A?x
, (24)

where (c) A? ≡ d
dΨ

(
1

2ω(Ψ)+3

) ∣∣∣
Ψ?

6= 0 ja (d) 1
2ω(Ψ)+3 is differentiable at

Ψ?.



Non-linear approximation (V 6≡ 0, ρ ≡ 0 case)

Keeping terms which are of first order in x and y , the dynamical system
(16), (17) becomes

ẋ = y , (25)

ẏ =
y2

2x
− C1 y + C2 x , (26)

where

C1 ≡ ±

√
3κ2V (Ψ?)

Ψ?
, C2 ≡ 2κ2A?

(
2V (Ψ)− dV (Ψ)

dΨ
Ψ

) ∣∣∣
Ψ?

,

(27)
encode the behavior of the functions ω and V near this point.
. JKS 2010a



Phase trajectories

The phase trajectories for the nonlinear approximate system (25), (26)
are determined by

dy

dx
=

y

2x
− C1 +

x

y
C2 , (28)

and its solutions depend on the sign of C 2
1 + 2C2 ≡ C :

|x |K =

∣∣∣∣12y2 + C1yx − C2x
2

∣∣∣∣ exp(−C1f (u)) , u ≡ y

x
, (29)

f (u) =
1√
C

ln

∣∣∣∣∣u + C1 −
√

C

u + C1 +
√

C

∣∣∣∣∣ if C > 0 ,

= − 2

u + C1
if C = 0 ,

=
2√
|C |

(
arctan

u + C1√
|C |

+ nπ

)
if C < 0 . (30)

JKS 2010a



Classification of phase portraits

C > 0 C > 0 C = 0 C < 0



Classification of phase portraits

C > 0 C > 0 C = 0 C < 0



Remarks

I We can argue that the topology of trajectories in the nonlinear
approximation is representative of those of the full system, therefore
should take the nonlinear approximation seriously.

I Typically there are many trajectories passing through the GR point
either once or multiple times.

I In the end, only if

d

dΨ

(
1

2ω(Ψ) + 3

) ∣∣∣∣∣
Ψ?

(
2V (Ψ)− dV (Ψ)

dΨ
Ψ

) ∣∣∣∣∣
Ψ?

< 0 (31)

does the GR point function as an asymptotic attractor for the flow
of all trajectories in the vicinity.



Time solutions

Can express these solutions also in terms of cosmological time:

± x = e−C1t
[
M1e

1
2 t
√

C −M2e
− 1

2 t
√

C
]2

, if C > 0 , (32)

= e−C1t
[
e

1
2 C1t1t −M2

]2

, if C = 0 , (33)

= e−C1t

[
N1 sin(

1

2
t
√
|C |)− N2 cos(

1

2
t
√
|C |)

]2

, if C < 0 .(34)

where M1,M2, t1,N1,N2 are constants of integration (determined by
initial conditions).



Expansion

Via Friedmann equation can express H(x(t)), Ḣ(x(t)) and

w = −1− 2Ḣ

3H2
= −1 +

1

C 2
1 Ψ?

[
3

2

(
1 +

1

Ψ?A?

)
ẋ2

x
− 4C1ẋ + 3C2x

]
(35)

.
The attractor solutions converge to de Sitter.
.
It is possible to have solutions which have oscillating or not-oscillating w ,
which are crossing the phantom divide (w = −1), and not crossing the
phantom divide.
.
Classification JKS 2010b.



Example of oscillating dark energy
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I Take ω(Ψ) = Ψ
2(1−Ψ) , κ2V (Ψ) = V0e

3(1−Ψ), the “GR point” is at

Ψ? = 1.

I Initial conditions satisfy solar System bounds.

I Oscillations of w measured in the units of the analogue of Hubble
time, T = H? t = C1

3 t.



Summary
I We have found and characterized the fixed points of STG cosmology

in the case when potential dominates over cosmological matter
density,

I in particular we have also found the general analytic form of
solutions around the fixed points.

I This can be applied to cosmological expansion: can tell whether the
solutions of any particular theory have oscillating, phantom crossing
etc behavior.

I The analysis in the case of matter domination should be refined by
carefully dealing with the indeterminacy in the equations.

I Next step, if possible: cross-over from matter domination to
potential domination.

I Rely upon the attractor mechanism: instead of scanning the full
phase space range of all theories, focus upon the vicinity of certain
points which are favored by cosmological dynamics.

I Selection principle: only those theories and models are viable, which
possess attractive fixed points, around where solutions satisfy
observational constraints.


