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Outline

General goal: explaining dark energy, testing gravity at large scales.
Notice:

» Many proposed modified gravity theories can be cast in the form of
scalar-tensor gravity (STG) - higher dimensions, branes, f(R), VSL

> “Attractor mechanism” - wide classes of STG cosmologies
dynamically converge to fixed points (Damour, Nordtvedt 1993).

Present work:

» Determine the conditions for attractive fixed points in STG
cosmology

» Find the general analytic form of solutions around these fixed points
Therefore can:

> Use these to confront observations (local weak field, expansion
history, growth of perturbations)

» Have a selection principle



Scalar-tensor gravity

Our starting point: “Brans-Dicke” parametrization, Jordan frame
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Family of theories, each pair w(W) and V(W) specifies a theory
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Variable gravitational “constant” 87 G = %2 assume 0 < WV < o0
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Local weak field experiments (Solar System)

If V(W) can be neglected, then
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“The limit of general relativity”, “Nordtvedt limit” (1970)
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(If V(W) gives a contribution, then the PPN parameters get a correction
Olmo 2005, Perivolaropoulos 2009.)



Scalar-tensor cosmology

Flat (k = 0) FLRW, barotropic matter fluid p = wp

H? = —H$+éj’;w(w)+’f$+’§vw‘")7 (7)

2H 43K — —2H$—é\\:ﬁ w(\ll)—i—:jwp—kl\fV(W), (8)
Vo= _3H\i’_2w(wl)+3 d‘;(u‘ly) 2 M(1—3w)p
*200(%:)2“, 2V(\U)—\Ud\2$}) , (9)

p = 3HWw+1)p (10)



STG cosmology as a dynamical system

Phase space: {W,1 =W, H, p}, tangent of trajectories: (¥, 1, H, p)
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STG cosmology phase space

The k = 0 trajectories lie on the 3-surface

H = —% + \/(2w(\U) +3) 12:}2 + w2(p J?:wV(W)) 7 (15)

Boundaries in the phase space:

> |H| — o0, |p| — o0, or |W| — oo imply a spacetime curvature
singularity,

v

W — 0 generally also a singularity (can not slip from “attractive” to
“repulsive” gravity),
» W — oo not a singularity, but gravitational “constant” %2 vanishes,
> V — 0o or 2w + 3 — 0 again a singularity,
ﬁ — 0 turns out to be a singularity as well, unless ¥ = 1 — 0.
JKS 2008



If potential dominates over matter density (V #Z 0, p = 0)

Using (15) can eliminate H and obtain a 2-dimensional system:
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Study the behavior of trajectories.



Fixed points (V # 0, p = 0 case)

Fixed points (W = 0,1 = 0) are of two types, given by:
dv
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The properties of fixed points (node, focus, saddle; stable, unstable) and
the form of solutions around the fixed points are determined by the
eigenvalues, and these by w(W, ), ZT‘”,N.,*, V(v,.), %N-w %NM
JKS 2008.

Notice W, is compatible with the “Nordtvedt limit", i.e. the local weak
field experments.
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If matter density dominates over potential (p # 0, V = 0)

Use new time variable dp = ‘H + %‘ dt, can eliminate H, to get
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Fixed point (W' =0, T’ = 0) in p-time corresponds to a fixed point
(U =0, =0) in t-time, and is given by:
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Again it is compatible with the “Nordtvedt limit".



A more careful analysis of W,

In the limit (V,,M,): (a) Wl)% — 0, (b) W= — 0 the equations
contain an indeterminacy (like £ at the origin).

Let us focus around this point ¥ =WV, + x, [1 =TI, + y = y and expand

in series
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where (c) A, = % (WI)H) ‘\u* # 0 ja (d) m is differentiable at



Non-linear approximation (V' # 0, p = 0 case)

Keeping terms which are of first order in x and y, the dynamical system
(16), (17) becomes

x =y, (25)
%
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encode the behavior of the functions w and V' near this point.
JKS 2010a



Phase trajectories

The phase trajectories for the nonlinear approximate system (25), (26)
are determined by
dy _y _

X
X ox C1+; G, (28)

and its solutions depend on the sign of C? +2C, = C:
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JKS 2010a
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Remarks

» We can argue that the topology of trajectories in the nonlinear
approximation is representative of those of the full system, therefore
should take the nonlinear approximation seriously.

» Typically there are many trajectories passing through the GR point
either once or multiple times.

> In the end, only if

o (owrss) ‘W* (2vew) - S50v) ‘W* <0 (3

does the GR point function as an asymptotic attractor for the flow
of all trajectories in the vicinity.




Time solutions

Can express these solutions also in terms of cosmological time:
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where My, My, t1, Ny, N, are constants of integration (determined by
initial conditions).



Expansion

Via Friedmann equation can express H(x(t)), H(x(t)) and

2H 1 [3 1\ %
=-1-—=-14+—=—|=(1 — —4CGix + 3C
v e v, {2 ( * \IJ*A*> X Ao atx
(35)
The attractor solutions converge to de Sitter.
It is possible to have solutions which have oscillating or not-oscillating w,
which are crossing the phantom divide (w = —1), and not crossing the

phantom divide.

Classification JKS 2010b.



Example of oscillating dark energy

> Take w(V) = ﬁ K2V (W) = Vpe3(1=¥) the “GR point” is at
v, =1.
» Initial conditions satisfy solar System bounds.

» Oscillations of w measured in the units of the analogue of Hubble
time, T=H, t =< t.



Summary
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We have found and characterized the fixed points of STG cosmology
in the case when potential dominates over cosmological matter
density,

in particular we have also found the general analytic form of
solutions around the fixed points.

This can be applied to cosmological expansion: can tell whether the
solutions of any particular theory have oscillating, phantom crossing
etc behavior.

The analysis in the case of matter domination should be refined by
carefully dealing with the indeterminacy in the equations.

Next step, if possible: cross-over from matter domination to
potential domination.

Rely upon the attractor mechanism: instead of scanning the full
phase space range of all theories, focus upon the vicinity of certain
points which are favored by cosmological dynamics.

Selection principle: only those theories and models are viable, which
possess attractive fixed points, around where solutions satisfy
observational constraints.



