Torsional shear oscillations of magnetized neutron stars

Michael Gabler Max-Planck-Institute for Astrophysics Garching

P.Cerdá-Durán, E.Müller (MPA Garching) J.A. Font (Universidad de Valencia), N. Stergioulas (University of Thessaloniki)

June 7, 2010

(日) (四) (王) (王)

ntroduction	Previous approaches	The theoretical model	Results	Conclusions
0	000	0	00000	

Introduction Motivation Observations

Previous approaches

The theoretical model Equations The numerical code - MCoCoA

Results Recovery of purely shear oscillations Coupled crust-core oscillations

Conclusions

Michael Gabler

Magnetar oscillation

Motivation

Quasi-periodic oscillations **QPO** in giant flares of **SGR**

Soft Gamma Repeater

- repeated activity
- soft gamma ray spectrum
- slowly rotating ($P = 5 \dots 10$ s)
- rapid spin down of rotation

Magnetar and giant flares (Duncan & Thompson 1992)

- highly magnetized ($\gtrsim 10^{15} {
 m G})$
- magnetic field produces stresses
 → crust brakes
- energy released \rightarrow fireball

イロト イポト イヨト イヨト

Magnetar oscillation

Introduction	
0	
•0	

Previous approaches

The theoretical mode

Results 0 0000 Conclusions

Observations

Giant flares

- SGR 0526-66 (1978), SGR 1900+14(1998), SGR 1806-20 (2004)
- Peak luminosity $10^{44} \dots 10^{46} \text{ erg/s}$
- Low frequency modulation
 ⇒ rotation period
 (5...10s)
- High frequency quasi periodic oscillations QPOs
- (Israel et al. 2005, Strohmayer & Watts 2006)

Michael Gabler

Magnetar oscillation

Introduction O O Previous approaches

The theoretical mode

Results 0 0000 Conclusions

Where do the QPOs come from?

- Torsional modes crust
- Alfvén modes core
- Oscillations of the magnetosphere

 \Rightarrow coupling of all three regions by magnetic field

Magnetar oscillation

ction	Previous approaches •00	The theoretical model	Results 0
		0	0000

Torsional Shear Oscillations of the Crust

Samuelsson & Andersson 2007				
Observed fre	equency in Hz	torsic	nal shear mode	
SGR 1806-20	SGR 1900+14	n	I	
18		???	???	
26		???	???	
30	28	0	2	
	53	0	4	
92	84	0	6	
150		0	10	
	155	0	11	
625		1		
1840		3		

(Schomaker & Thorne 1983, Piro 2005, Samuelsson & Andersson 2007) no magnetic field

- free slip / zero traction at crust core interface
- Newtonian estimates for ω :

$$\Rightarrow$$
 $n = 0$:

=

$$\omega^2 \sim rac{(l-1)(l+1)}{RR_c}$$

 R_c - radius of crust $\Rightarrow n > 1$:

Michael Gabler

Magnetar oscillation

Introduction 0 00 Results 0 0000 Conclusions

Alfvén oscillations of the core

Linear approximation (Sotani et al. 2008; Colaiuda et al. 2009) 2D MHD simulations in the anelastic approximation (Cerdá-Durán et al. 2009)

- Axisymmetric, poloidal magnetic field configuration
- Continuum of frequencies with two families of weakly damped long lived QPOs
- Lower QPOs near the closed field lines
- Upper QPOs near the pole
- Integer relation between different overtones may explain some of observed QPOs:
 - ▷ SGR 1900+14 : 28, 84, 155 Hz= 1, 3, (5)
 - \triangleright SGR 1806-20 : 30, 92, 150 Hz= 1, 3, 5

Introduction 0 00 Previous approaches

Results 0 0000 Conclusions

Crust-core coupling (the key ingredient)

Toy models (Glampedakis et al. '06; Levin '07; Van Hoven & Levin '10)

- Global torsional modes only with unphysically large dissipation
- Coupling introduces damping of crust modes
- Modes of Alfvén-continuum are preferably excited by crust modes of similar frequency
- QPOs appear at the edges or turning points of the continuum

Linear analysis (Sotani et al. '06)

- Avoided crossings between crustal and Alfvén modes with increasing field strength
- Magnetic field dominates for strength 10¹⁵ G
- Good agreement with observed QPOs of SGR

Introduction 0 00 Previous approaches

The theoretical model
•

Results 0 0000 Conclusions

Equations

$$ds^{2} = -\alpha^{2}dt^{2} + \gamma_{ij}(dx^{i} + \beta^{i}dt)(dx^{j} + \beta^{j}dt)$$
$$T^{\mu\nu} = (\rho h + b^{2})u^{\mu}u^{\nu} + \left(P + \frac{1}{2}b^{2}\right)g^{\mu\nu} - b^{\mu}b^{\nu} - 2\mu_{Shear}\Sigma^{\mu\nu}$$

$$\frac{1}{\sqrt{-g}} \left(\frac{\partial \sqrt{\gamma} \mathbf{U}}{\partial t} + \frac{\partial \sqrt{-g} \mathbf{F}^{\mathbf{i}}}{\partial x^{i}} \right) = \mathbf{0}$$

In linear regime poloidal and toroidal perturbations decouple

 $\mathbf{U} = [S_{\varphi}, B^{\varphi}],$ $\mathbf{F}^{i} = \left[-\frac{b_{\varphi}B^{i}}{W} - 2\mu_{S}\Sigma^{i}{}_{\varphi}, -v^{\varphi}B^{i}\right]$ $\Sigma^{i\varphi} = 1/2g^{ii}\xi^{\varphi}{}_{,i}$ $\xi^{i}_{,t} = \alpha v^{i} \Rightarrow \boxed{(\xi^{i}_{,r})_{,t} - (\alpha v^{i})_{,r} = 0}$

Michael Gabler

Magnetar oscillation

The numerical code - MCoCoA

- Ideal MHD code in dynamical space-time (Godunov type schemes + flux CT)
- Conformal Flatness Condition (CFC) approximation (Isenberg 1979/2008, Wilson 1989)
- Spherical polar coordinates in axisymmetry (2D)
- GRMHD anelastic approximation (Bonazzola et al. 2007)
 - \triangleright Sound waves neglected
 - $\,\triangleright\,$ Valid close to the equilibrium
 - Courant condition for Alfvén time

Recovery of purely shear oscillations

The Fourier analysis of 2D simulations without magnetic field for different tabulated EOS provides this sample of frequencies:

Model	frequency in Hz for mode			
	n=0 (±1Hz)			n=1
	I = 2	I = 3	I = 4	$\pm 20 \text{Hz}$
APR+DH 1.6	23.5 (23.4)	37.1 (37.0)	49.8 (49.6)	880 (860)
APR+DH 2.0	21.9 (21.3)	35.1 (33.6)	46.8 (45.1)	1070 (1083)
L+DH 1.6	20.5 (20.6)	32.5 (32.5)	43.8 (43.7)	590 (586)
L+DH 2.0	19.0 (18.9)	30.2 (29.9)	40.5 (40.2)	720 (713)
WFF3+DH 1.6	25.2 (25.2)	39.8 (39.9)	53.4 (53.5)	1130 (1101)

Very good agreement with linear analysis of Sotani et al. 2007

NEB14 - Ioannina - June 7, 2010

イロト イポト イヨト イヨト

Coupled crust-core oscillations

Representative model

- EOS: APR + DH
- Mass: 1.4 solar masses
- Radius: 12.26km
- Magnetic field structure: dipolar
- Magnetic field strength (if not stated otherwise): $4 \times 10^{14} G$

Additional tool for analysis

 Adopted semi-analytical model of Cerdá-Durán et al. 2009: integration of a perturbation along the magnetic field lines to obtain the frequencies of the Alfvén continuum

Magnetar oscillation

NEB14 - Ioannina - June 7, 2010

イロト イポト イヨト イヨト

ction	Previous approaches
	000

The theoretical model

Conclusions

Damping of crust modes

- Strong damping of n = 0 crust modes (timescale 1/10s for 5×10^{13} G)
- After initial damping contributions to the overlap integrals are produced by coupled magneto-elastic oscillations

Michael Gabler

Magnetar oscillation

duction	Previous approaches	The theoretical model	Results	Со
	000	0	0 00●0	

Fourier analysis of the simulation

Three different families of QPOs:

- Upper (U)
 a, d, f, g, i, k
- Edge (E)
 c, h, j, l
- Lower (L)
 b, e

Magnetar oscillation

luction	Previous approaches	The theoretical model	Results	Conc
	000	0 0	0 0000	

Averaged amplitude of the FFT per field line

Comparison with semi-analytical approach (solid and dashed lines)

- L: at the turning points located at the closed field lines
- E: at the edges of the continuum which are not connected to the continuum of the closed field lines
- U: in the continuum of the simple semi-analytical model,
 but this only valid for perfect reflection

Michael Gabler

Magnetar oscillation

uction	Previous approaches	The theoretical model
	000	0

Results 0 0000 Conclusions

Conclusions

- The two extreme cases zero shear and zero magnetic field are recovered
- n = 0 crustal shear modes are damped rapidly for magnetic field strength well below that assumed for magnetars (timescale: 1/10s for 5×10^{13} G)
- n = 1 are damped less strongly, this is currently investigated
- At magnetar field strength we find Alfvén QPOs in the core:
 - Lower (turning point) QPOs are obtained as before, because the crust does not influence the closed field lines
 - Coupling introduced by the crust enables new edge QPOs
 - Influence of the crust changes the properties of the upper QPO

