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Motivation

Quasi-periodic oscillations QPO in giant flares of SGR

Soft Gamma Repeater
• repeated activity

• soft gamma ray spectrum

• slowly rotating (P = 5 . . . 10s)

• rapid spin down of rotation

Magnetar and giant flares
(Duncan & Thompson 1992)
• highly magnetized (& 1015G)

• magnetic field produces stresses
→ crust brakes

• energy released → fireball
Robert S. Mallozzi, UAH/NASA MSFC
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Observations

Giant flares

• SGR 0526-66 (1978),
SGR 1900+14(1998),
SGR 1806-20 (2004)

• Peak luminosity
1044 . . . 1046 erg/s

• Low frequency modulation
⇒ rotation period
(5 . . . 10s)

• High frequency quasi
periodic oscillations QPOs

(Israel et al. 2005, Strohmayer
& Watts 2006)

Strohmayer & Watts 2006
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Where do the QPOs come from?

Heavy liquid core,
mostly neutrons, 
with other particles

Solid crust
~ 1 ... 2 km

Neutron StarNeutron Star
Mass ~ 1.5 times the Sun
diameter ~ 20 km

Magnetic field
~1014 ... 1015 G

• Torsional modes crust

• Alfvén modes core

• Oscillations of the
magnetosphere

⇒ coupling of all three regions by magnetic field
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Torsional Shear Oscillations of the Crust

Samuelsson & Andersson 2007
Observed frequency in Hz torsional shear mode

SGR 1806-20 SGR 1900+14 n l

18 ??? ???
26 ??? ???
30 28 0 2

53 0 4
92 84 0 6
150 0 10

155 0 11
625 1
1840 3

(Schomaker & Thorne 1983, Piro 2005,
Samuelsson & Andersson 2007)

• no magnetic field

• free slip / zero traction at
crust core interface

• Newtonian estimates for ω:

⇒ n = 0:

ω2 ∼ (l − 1)(l + 1)

RRc

Rc - radius of crust
⇒ n > 1:

ω ∼ n

∆

∆ - crust thickness
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Alfvén oscillations of the core

Linear approximation
(Sotani et al. 2008;
Colaiuda et al. 2009)

2D MHD simulations in the
anelastic approximation
(Cerdá-Durán et al. 2009)

• Axisymmetric, poloidal magnetic field configuration

• Continuum of frequencies with two families of
weakly damped long lived QPOs

• Lower QPOs near the closed field lines

• Upper QPOs near the pole

• Integer relation between different overtones may
explain some of observed QPOs:

B SGR 1900+14 : 28, 84, 155 Hz= 1, 3, (5)
B SGR 1806-20 : 30, 92, 150 Hz= 1, 3, 5
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Crust-core coupling
(the key ingredient)

Toy models (Glampedakis et al. ’06; Levin ’07; Van Hoven & Levin ’10)

• Global torsional modes only with unphysically large dissipation
• Coupling introduces damping of crust modes
• Modes of Alfvén-continuum are preferably excited by crust

modes of similar frequency
• QPOs appear at the edges or turning points of the continuum

Linear analysis (Sotani et al. ’06)

• Avoided crossings between crustal and Alfvén modes with
increasing field strength

• Magnetic field dominates for strength 1015 G
• Good agreement with observed QPOs of SGR
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Equations

ds2 = −α2dt2 + γij(dx i + βidt)(dx j + βjdt)

Tµν = (ρh + b2)uµuν +

(
P +

1

2
b2

)
gµν − bµbν − 2µShear Σµν

1√
−g

(
∂
√
γU

∂t
+
∂
√
−gFi

∂x i

)
= 0

In linear regime poloidal and toroidal perturbations decouple

U = [Sϕ,B
ϕ] ,

Fi =

[
−bϕB i

W
− 2µSΣi

ϕ,−vϕB i

]
Σiϕ = 1/2g iiξϕ,i

ξi,t = αv i ⇒
(
ξi,r

)
,t
−

(
αv i

)
,r

= 0
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The numerical code - MCoCoA

• Ideal MHD code in dynamical space-time (Godunov type
schemes + flux CT)

• Conformal Flatness Condition (CFC) approximation (Isenberg
1979/2008, Wilson 1989)

• Spherical polar coordinates in axisymmetry (2D)

• GRMHD anelastic approximation (Bonazzola et al. 2007)

B Sound waves neglected
B Valid close to the equilibrium
B Courant condition for Alfvén time
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Recovery of purely shear oscillations

The Fourier analysis of 2D simulations without magnetic field for
different tabulated EOS provides this sample of frequencies:

Model frequency in Hz for mode

n=0 (±1Hz) n = 1
l = 2 l = 3 l = 4 ±20Hz

APR+DH 1.6 23.5 (23.4) 37.1 (37.0) 49.8 (49.6) 880 (860)
APR+DH 2.0 21.9 (21.3) 35.1 (33.6) 46.8 (45.1) 1070 (1083)

L+DH 1.6 20.5 (20.6) 32.5 (32.5) 43.8 (43.7) 590 (586)
L+DH 2.0 19.0 (18.9) 30.2 (29.9) 40.5 (40.2) 720 (713)

WFF3+DH 1.6 25.2 (25.2) 39.8 (39.9) 53.4 (53.5) 1130 (1101)

Very good agreement with linear analysis of Sotani et al. 2007.
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Coupled crust-core oscillations

Representative model

• EOS: APR + DH

• Mass: 1.4 solar masses

• Radius: 12.26km

• Magnetic field structure: dipolar

• Magnetic field strength (if not stated otherwise): 4× 1014G

Additional tool for analysis

• Adopted semi-analytical model of Cerdá-Durán et al. 2009:
integration of a perturbation along the magnetic field lines to
obtain the frequencies of the Alfvén continuum
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Damping of crust modes
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• Strong damping of n = 0 crust modes (timescale 1/10s for
5× 1013G)

• After initial damping contributions to the overlap integrals are
produced by coupled magneto-elastic oscillations
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Fourier analysis of the simulation

Three different
families of QPOs:

• Upper (U)
a, d, f, g, i, k

• Edge (E)
c, h, j, l

• Lower (L)
b, e
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Averaged amplitude of the FFT per field line
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Comparison with semi-analytical approach (solid and dashed lines)
• L: at the turning points located at the closed field lines
• E: at the edges of the continuum which are not connected to

the continuum of the closed field lines
• U: in the continuum of the simple semi-analytical model,

but this only valid for perfect reflection
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Conclusions

• The two extreme cases zero shear and zero magnetic field are
recovered

• n = 0 crustal shear modes are damped rapidly for magnetic
field strength well below that assumed for magnetars
(timescale: 1/10s for 5× 1013G)

• n = 1 are damped less strongly, this is currently investigated

• At magnetar field strength we find Alfvén QPOs in the core:
• Lower (turning point) QPOs are obtained as before, because

the crust does not influence the closed field lines
• Coupling introduced by the crust enables new edge QPOs
• Influence of the crust changes the properties of the upper QPO
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