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Main focus: Properties of four and higher dimensional
rotating black holes

Spherical topology of the horizon

Either asymptotically flat (vacuum) or asympt. 
(A)deSitter (with cosmological constant)

Particle motion (mainly geodesics)

Field propagation

Key words:  Hidden symmetries

Complete integrability

Separation of variables
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Integrability means: reducible to quadratures

Integrability is linked to `existence of constants of motion'

               How many constants of motion 

               How precisely they are related

               How the phase space is foliated by their level sets

A system of differential equations is said to be integrable by

quadratures if its solutions can be found after a finite number

of steps involving algebraic operations and integration of given

functions.



1

Liouville theorem (Bour, 1855;   Liouville, 1855):
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The main idea behind Liouville's theorem is that the first

integrals  can be used as local coordinates. The involution

condition implies that the  vector fields, generated by 

commute with each othe

i
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r and provide a choice of canonical

coordinates. In these coordinates, the Hamiltonian is reduced

to a sum of  decoupled Hamiltonians that can be integratedm

Liouville Integrable System
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Integrability and chaotic motion are at the two ends of 
`properties’ of a dynamical system. But integrability is 
exceptional, chaoticity is generic.

In all cases, integrability seems to be deeply related 
with some symmetry, which might be partially hidden: 
the existence of constants of motion reflects the symmetry.

Important  known examples of integrable mechanical 
systems include:

(1) Motion in Euclidean space under central potential
(2) Motion in the two Newtonian fixed centers 
(3) Geodesics on an ellipsoid (Jacobi, 1838)
(4) Motion of a rigid body about a fixed point (several cases)

(Euler, Lagrange, Kowalevski)
(5) Neumann model
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Particle motion in GR
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Phase space in GR: ( , ) are canonical coordinates:
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Geodesic motion in the gravitational field of 4 
and higher dimensional rotating black holes with 
spherical topology of the horizon (with `NUT’ 
parameters) in the asymptotically flat or (A)dS

New physically interesting wide class 
of completely integrable systems



Separation of variables in HJ eqs
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involution the system is integrable in the Liouville sence.



Forms (=AStensor)
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CKY=Conformal Killing-Yano tensor
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Properties of CKY tensor

Hodge dual of CKY tensor is CKY tensor

Hodge dual of closed CKY tensor is KY 
tensor

External product of two closed CKY tensors 
is a closed CKY tensor
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Principal Killing-Yano tensor
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PKY tensor is a closed non-degenerate 
(matrix rank 2n) 2-form obeying (*)

 is a primary Killing vector (off-shell!!)a



Killing-Yano Tower



Killing-Yano Tower
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Existence of the Principal CCKY tensor in 
the most general known solution for higher 
dimensional rotational Kerr-NUT-(A)dS black 
hole metric was discovered in:

V. F., D.Kubiznak, Phys.Rev.Lett. 98, 011101 (2007); gr-qc/0605058

D. Kubiznak, V. F., Class.Quant.Grav.24:F1-F6 (2007); gr-qc/0610144



Constructed KY tower produces a set of D 
non-degenerate, functionally independent 
Killing integrals of motion in the involution

P. Krtous, D. Kubiznak, D. N. Page, V.  F., JHEP 0702:004 (2007)

D. N. Page, D. Kubiznak, M. Vasudevan, P. Krtous, Phys.Rev.Lett. (2007)

P. Krtous, D. Kubiznak, D. N. Page, M. Vasudevan, PRD76:084034 (2007);



Metrics which admit Principal CCKY 
tensor allow complete description
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Houri, Oota, and Yasui [PLB (2007); JP A41 (2008)] proved this result under additional assumptions:  

0 and 0.  More recently Krtous, V.F., Kubiznak [arXiv:0804.4705 (2008)] and 

Houri, Oota, and Ya

L g L h  

sui  [arXiv:0805.3877 (2008)] proved this without additional assumptions.



Canonical Coordinates
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Principal CCKY tensor 

Non-degeneracy:

(1) Eigen-spaces of are 2-dimensional

(2) are functionally independent in some domain

(they can be used as essential coordinates)

h

x

(1) is proved by Houri, Oota and Yasui e-print arXiv:0805.3877

(2) Case when some of eigenvalues are constant studied in 
Houri, Oota and Yasui Phys.Lett.B666:391-394,2008. 
e-Print: arXiv:0805.0838



On-Shell Result

A solution of the vacuum Einstein equations 
with the cosmological constant which admits a 

(non-degenerate) principal CKY tensor 
coincides with  the Kerr-NUT-(A)dS spacetime.
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Kerr-NUT-(A)dS spacetime is the most general BH 
solution obtained by Chen, Lu, and Pope [CQG (2006)];
See also Oota and Yasui [PL B659 (2008)]



"General Kerr-NUT-AdS metrics in all dimensions“,  Chen, 
Lü and Pope, Class. Quant. Grav. 23 , 5323 (2006). 
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Separability of the Hamilton–Jacobi equation
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V. F., P. Krtous , D. Kubiznak , JHEP 0702:005 (2007); hep-th/0611245



Separability of the Klein–Gordon equation
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Weakly charged higher dimensional rotating black holes 
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For a primary Killing vector field one again has a complete separation of variables

[V.F. 2010 (under preparation)]



Notes on Parallel Transport

Case 1: Parallel transport along timelike geodesics

Let  be a vector of velocity and  be a PCKYT. 
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Suppose  is a non-degenerate, then for a generic geodesic

eigen spaces of  with non-vanishing eigen values are two

dimensional. These 2D eigen spaces are parallel propagated.

Thus a problem reduces
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 to finding a parallel propagated basis in 2D

spaces. They can be obtained from initially chosen basis by  2D

rotations. The ODE for the angle of rotation can be solved by

a separation of variables.

[Connell, V.F., Kubiznak, PRD 78, 024042 (2008)]



Case 2: Parallel transport along null geodesics

Let  be a tangent vector to a null geodesic and  be a
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Further Developments

Stationary string equations in the Kerr-NUT-(A)dS 
spacetime are completely integrable. 
[D. Kubiznak, V. F., JHEP 0802:007,2008; arXiv:0711.2300]

Solving equations of the parallel transport along 
geodesics  [P. Connell, V. F., D. Kubiznak, PRD,78, 024042 (2008); 

arXiv:0803.3259; D. Kubiznak, V. F., P. Connell, arXiv:0811.0012 (2008)]

Separability of the massive Dirac equation in the 
Kerr-NUT-(A)dS spacetime  [Oota and Yasui, Phys. Lett. 

B 659, 688 (2008)]



Separability of Gravitational Perturbation in 
Generalized Kerr-NUT-de Sitter Spacetime
[Oota, Yasui, arXiv:0812.1623]

On the supersymmetric limit of Kerr-NUT-AdS 
metrics [Kubiznak, arXiv:0902.1999]

Einstein spaces with degenerate closed 
conformal KY tensor [Houri, Oota and Yasui 

Phys.Lett.B666:391-394,2008.  e-Print: arXiv:0805.0838]
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Minimally gauged supergravity (5D EM with Chern-Simo

GENERALIZED KILLING-YANO TENSORS

[Kubiznak, Kunduri, and Yasui, 0905.0722 (2009)]
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Summary

The most general spacetime admitting the PCKY tensor is described by the 
canonical metric. It has the following properties:

● It is of the algebraic type D

● It allows a separation of variables for the Hamilton-Jacoby, Klein-Gordon, 
Dirac, tensorial gravitational perturbations, and stationary string equations

● The geodesic motion in such a spacetime is completely integrable. The 
problem of finding parallel-propagated frames reduces to a set of the first 
order ODE. This is a new interesting example of completely integrable 
system.

● When the Einstein equations with the cosmological constant are imposed 
the canonical metric becomes the Kerr-NUT-(A)dS spacetime

● Possible generalizations to degenerate PCKY tensor and non-vacuum STs


