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Quantization of Finite Degrees of Freedom Constraint Systems

Preliminaries: Quantization of Finite Degrees of
Freedom (1st class) Constraint Systems

We assume a system described by a Hamiltonian of the
form:

H ≡ µX + µiχi

= µ

(
1

2
GAB(QΓ)PAPB + UA(QΓ)PA + V (QΓ)

)
+µi φAi (QΓ)PA

Primary Constraints: Pµ ≈ 0, Pµi ≈ 0

Secondary Constraints: X ≈ 0, χi ≈ 0

The constraints are assumed to be first class:

{X,X} = 0, {X,χi} = XCi + Cji χj , {χi, χj} = Ckijχk
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Quantization of Finite Degrees of Freedom Constraint Systems

The physical state of the system is unaffected by the
“gauge” transformations generated by (X, χi),
i.e. δiA = {A,χi}, δ0A = {A,X}
but also under the following three changes:

(I) Mixing of the super-momenta with a non-singular matrix

χ̄i = λji (Q
Γ)χj

(II) Gauging of the super-Hamiltonian with the super-momenta

X̄ = X + κ(Ai(QΓ)φ
B)
i (QΓ)PAPB + σi(QΓ)φAi (QΓ)PA

(III) Scaling of the super-Hamiltonian

X̄ = τ2(QΓ)X
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Quantization of Finite Degrees of Freedom Constraint Systems

The whole quantization scheme must be independent of
actions (I), (II), (III). This is achieved by:

(1) Realize the linear operator constraint conditions with the
momentum operators to the right

χ̂iΨ = 0↔ φAi (QΓ)
∂Ψ(QΓ)

∂ QA
= 0,

maintaining the geometrical meaning of the linear
constraints and producing the M −N independent solutions
qα(QΓ), α = 1, 2, . . . ,M −N called physical variables.

(2) Define the induced structure gαβ ≡ GAB ∂ qα

∂ QA
∂ qβ

∂ QB
and

realize the quadratic in momenta part of X as the
conformal Laplace-Beltrami operator based on gαβ .

gαβ(qγ) by virtue of the 1st class algebra.
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Possible Metrics and Hamiltonian Formulation

Possible metrics and Hamiltonian Formulation

Two-dimensional spaces of positive, zero and negative constant
curvature:

ds2 = dθ2+sin2 θ dφ2, ds2 = dθ2+θ2 dφ2, ds2 = dθ2+sinh2 θ dφ2

The corresponding (maximal) symmetry groups are generated
by the following KVF’s:

ξ1 =
∂

∂φ
, ξ2 = − cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ

ξ3 = sinφ
∂

∂θ
+ cot θ cosφ

∂

∂φ
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Possible Metrics and Hamiltonian Formulation

ξ1 =
∂

∂φ
, ξ2 = − cosφ

∂

∂θ
+

sinφ

θ

∂

∂φ

ξ3 = sinφ
∂

∂θ
+

cosφ

θ

∂

∂φ

ξ1 =
∂

∂φ
, ξ2 = − cosφ

∂

∂θ
+ coth θ sinφ

∂

∂φ

ξ3 = sinφ
∂

∂θ
+ coth θ cosφ

∂

∂φ
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Possible Metrics and Hamiltonian Formulation

Reduced line element:

ds2 =

(
−α(t, r)2 +

β(t, r)2

γ(t, r)2

)
dt2 + 2β(t, r) d t d r + γ(t, r)2 d r2

+ ψ(t, r)2 d θ2 + ψ(t, r)2 f(θ)2 dφ2

where:

f(θ) = sin θ : spherical symmetry,

f(θ) = θ : plane symmetry,

f(θ) = sinh θ : GBL symmetry.
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Possible Metrics and Hamiltonian Formulation

We define the vectors

ηI =
1

α(t, r)
(1,− β(t, r)

γ(t, r)2
, 0, 0), F I = ηJ;J η

I − ηI;J ηJ ,

Utilizing the Gauss-Codazzi equation, yields an action
quadratic in the velocities,

I =

∫
d4x
√
−g(R− 2Λ− 2F I;I)

Dirac algorithm results in the primary constraints

Pα ≡
δL

δα̇
≈ 0, P β ≡ δL

δβ̇
≈ 0

and the Hamiltonian

H =

∫ (
NoHo +N iHi

)
dr,
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Possible Metrics and Hamiltonian Formulation

where

No = α(t, r), N1 =
β(t, r)

γ(t, r)2
, N2 = 0, N3 = 0

Ho =
1

2
Gαβ πα πβ + V,

H1 = −γ π′γ + ψ′ πψ, H2 = 0, H3 = 0,

and {α, β} take the values {γ, ψ} while ′ =
d

d r
.
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Possible Metrics and Hamiltonian Formulation

Reduced Wheeler-deWitt super-metric Gαβ:

Gαβ =


γ

4ψ2
− 1

4ψ

− 1

4ψ
0

 ,

while the potential V is

V = −2 ε γ + 2Λγ ψ2 − 2
ψ′ 2

γ
+ 4

(
ψ ψ′

γ

)′
with ε = {1, 0,−1} for positive, zero or negative constant
curvature, respectively.
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Possible Metrics and Hamiltonian Formulation

The requirement for preservation, in time, of the primary
constraints leads to the secondary constraints:

Ho ≈ 0, H1 ≈ 0

Open Poisson bracket algebra of these constraints:

{Ho(r),Ho(r̃)} =

[
1

γ2(r)
H1(r) +

1

γ2(r̃)
H1(r̃)

]
δ′(r, r̃),

{H1(r),Ho(r̃)} = Ho(r)δ′(r, r̃),

{H1(r),H1(r̃)} = H1(r)δ′(r, r̃)−H1(r̃)δ(r, r̃)′.
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Possible Metrics and Hamiltonian Formulation

Under general changes r → r̃ = h(r), it follows:

γ̃(r̃) = γ(r)
d r

d r̃
, ψ̃(r̃) = ψ(r),

d ψ̃(r̃)

d r̃
=
dψ(r)

d r

d r

d r̃
,

With the infinitesimal transformation r → r̃ = r − η(r), the
corresponding changes induced on the basic fields are:

δ γ(r) = (γ(r) η(r))′, δ ψ(r) = ψ′(r) η(r)

(one-dimensional analogue of the appropriate Lie
derivatives).

Action of H1 on the basic configuration space variables:
Generator of spatial diffeomorphisms, i.e.{

γ(r) ,

∫
dr̃ η(r̃)H1(r̃)

}
= (γ(r) η(r))′,{

ψ(r) ,

∫
dr̃ η(r̃)H1(r̃)

}
= ψ′(r) η(r).
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Canonical Quantization

Canonical Quantization

Realize classical momenta as functional derivatives with
respect to their corresponding conjugate fields:

π̂γ(r) = −i δ

δ γ(r)
, π̂ψ(r) = −i δ

δ ψ(r)
.

Decide on initial state of space vectors:

π̂γ(r)γ(r̃)2 = −2iγ(r̃)δ(r̃, r).

Choose as initial collection of states all smooth functionals
of the configuration variables γ(r), ψ(r) and their
derivatives of any order:

π̂γ(r)

∫
dr̃γ(r̃)2 = −2i

∫
dr̃γ(r̃)δ(r̃, r) = −2iγ(r)
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Canonical Quantization

But

π̂γ(r) π̂γ(r)

∫
dr̃γ(r̃)2 = π̂γ(r)(−2i

∫
dr̃γ(r̃)δ(r̃, r)) = π̂γ(r)(−2iγ(r))

= −2δ(0)

π̂γ(r)

∫
dr̃γ′′(r̃)2 = −2i

∫
dr̃γ′′(r̃)δ′′(r̃, r) = −2iγ(4)(r)
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Canonical Quantization

Generalizing the H-Kuchař quantization yields a quantization
scheme of our system which:

(a) avoids the occurrence of δ(0)’s,

(b) reveals the value n = 1 as the only natural (i.e. without
ad-hoc cut-offs) possibility to obtain a closed space of state
vectors,

(c) extracts a finite-dimensional Wheeler-deWitt equation
governing the quantum dynamics.
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Canonical Quantization

Step 1: Define the quantum analogue of H1(r) ≈ 0 as:

Ĥ1(r)Φ = 0↔ −γ(r) (
δΦ

δ γ(r)
)′ + ψ′(r)

δΦ

δ ψ(r)
= 0.

General Solutions:

Φ =

∫
γ(r̃)L

(
Ψ(0),Ψ(1), . . . ,Ψ(n)

)
dr̃

Ψ(0) ≡ ψ(r̃), Ψ(1) ≡ ψ′(r̃)

γ(r̃)
, . . . ,Ψ(n) ≡ 1

γ(r̃)

d

dr̃

 . . .︸︷︷︸
n−1

ψ(r̃)


where L is any function of its arguments.
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Canonical Quantization

Step 2: Define the equivalent of Kuchař’s induced metric
on the so far space of “physical” states Φ: analogues of
Kuchař’s physical variables qα.

Consider one initial candidate of the above form.

Generalize the partial to functional derivatives.

⇒ Induced metric:

gΦΦ = Gαβ
δΦ

δ xα
δΦ

δ xβ
, where xα = {γ, ψ}

Well-defined metric (it contains only first functional
derivatives of the state vectors).
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Canonical Quantization

Nevertheless, gΦΦ is a local function and not a smooth
functional. For the induced metric gΦΦ to be composed out
of the “physical” states annihilated by Ĥ1, a
correspondence between local functions and smooth
functionals is necessary:

Assumption: We assume that, as part of the
renormalization procedure, we are permitted to map local
functions to their corresponding smeared expressions e.g.,
ψ(r)↔

∫
dr̃ψ(r̃).

Let F be the space which contains all local functions, and
define the equivalence relations

∼: {f1(r) ∼ f2(r̃), r̃ = g(r)}, ≈: {h1(r) ≈ h2(r̃)
d r̃

d r
, r̃ = g(r)}

for scalars and densities respectively.
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Canonical Quantization

In order to proceed with the generalization of Kuchař’s
method, we have to demand that:

Requirement: L
(
Ψ(0), . . . ,Ψ(n)

)
must be such that gΦΦ

becomes a general function, say F
(
γ(r)L(Ψ(0), . . . ,Ψ(n))

)
of the integrand of Φ, so that it can be considered as a
function of this state:

gΦΦ Assumption
≡ F

(∫
γ(r̃)L(Ψ(0), . . . ,Ψ(n))dr̃

)
= F (Φ).
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Canonical Quantization

More precisely

gΦΦ = . . .+ 2G12 δΦ

δγ(r)

δΦ

δψ(r)
,

where the functional derivatives are:

δΦ

δψ
= . . .+

∫
γ

∂L

∂Ψ(n)

δΨ(n)

δψ
dr̃

= . . .+

∫
γ

∂L

∂Ψ(n)

1

γ

d

dr̃

 . . .︸︷︷︸
n−1

δ(r, r̃)

 dr̃ =

= . . .−
∫
γ

∂2L

∂
(
Ψ(n)

)2 Ψ(n+1) 1

γ

d

dr̃

 . . .︸︷︷︸
n−2

δ(r, r̃)

 dr̃ =

...

= . . .+ (−1)nγ
∂2L

∂
(
Ψ(n)

)2 Ψ(2n)
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Canonical Quantization

Similarly,

δΦ

δγ
= . . .+ (−1)n−1 ∂2L

∂
(
Ψ(n)

)2 Ψ(2n−1) Ψ(1).

Therefore

gΦΦ = . . .− γ

2ψ
(−1)2n−1

(
∂2L

∂
(
Ψ(n)

)2
)2

Ψ(1) Ψ(2n−1) Ψ(2n),

where the . . . stand for all other terms, not involving Ψ(2n).
According to the aforementioned Requirement we need this to
be a general function, say F (γL), and for this to happen the
coefficient of Ψ(2n) must vanish, i.e.

∂2L

∂
(
Ψ(n)

)2 = 0

⇔ L = L1

(
Ψ(0), . . . ,Ψ(n−1)

)
Ψ(n) + L2

(
Ψ(0), . . . ,Ψ(n−1)

)
.
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Canonical Quantization

For the local part of Φ only L2 is important.

All Ψ(n)’s are suppressed from L except when n = 1 since,
upon elimination of the linear in Ψ(2) term we are left with
a local function of Ψ(1), and thus the possibility arises to
meet the Requirement by solving a differential equation
for L. Hence, if

Φ ≡
∫
γ(r̃)L

(
ψ,Ψ(1)

)
dr̃,

through the definition

H ≡ L−Ψ(1) ∂L

∂Ψ(1)

and by virtue of the Assumption, we obtain

gΦΦ =
γ

4ψ2

(
H2 − 2ψH

∂H

∂ψ
+ 4ψ2Ψ(1) ∂

∂ψ

∫
1

2ψΨ(1)
H

∂H

∂Ψ(1)
dΨ(1)

)
.
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Canonical Quantization

Obviously, the Requirement can be satisfied only by

gΦΦ = κ γ L

The autonomous necessary condition for H(ψ, Ψ(1)) is:

H

(
1

4ψ2
H − 1

2ψ

∂H

∂ψ
− κ
)

= 0,

which upon integration gives

H = 0,

H = −4κψ2

3
+
√
ψ a(Ψ(1))

where a(Ψ(1)) is an arbitrary function of its argument.
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Canonical Quantization

We, finally, end up with the two scalar functionals:

y1 =

∫
γ(r̃)dr̃, y2 =

∫
γ(r̃)ψ(r̃)2dr̃

inducing the following metric:

gABren(y1, y2) = −1

4

−
(
y1
)2

y2
y1

y1 3 y2


To complete the investigation, we have to start with y1, y2

and consider a third functional of the general form:

y3 =

∫
dr̃ γ(r̃)L(Ψ(1))
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Canonical Quantization

Any other functional, say

y4 =

∫
dr̃ γ(r̃)K

[
ψ(r̃),Ψ(1)(r̃)

]
,

can be considered as a function of y1, y2, y3.

Indeed, since the scalar functions appearing in the
integrands of y2, y3 form a base in the space spanned by
ψ,Ψ(1), we can express the generic K in y4 as

K

[√
γψ2

γ
,Ψ(1)

]
,

which (through the Assumption) gives

y4 = y1K

[√
y2

y1
, L−1

(
y3

y1

)]
.
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Canonical Quantization

It is interesting that the induced metric is

gABren(y1, y2, y3) = −1

4



− (y1)
2

y2 y1 −y1y3

y2

y1 3 y2 y3

−y1y3

y2 y3 − (y3)
2

y2 +
4 (y1)

2
F ( y

3

y1 )2

3 y2F ′
[
F ( y

3

y1 )
]2


where

g33
ren =

∫
γ

4ψ2
W (L(Ψ(1)))dr

or, equivalently, via the Assumption

g33
ren =

(y1)2

4y2
W (

y3

y1
)
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Canonical Quantization

The quantity W (L(Ψ(1))) is parameterized as

L
(

Ψ(1)
)2
−

4F [L
(
Ψ(1)

)
]
2

3F ′[F [L
(
Ψ(1)

)
]]

2 .

and gABren satisfies the Requirement for any choice of
L(Ψ(1)).

More interestingly and unexpectedly, the freedom in the
choice of L translates into a pure g.c.t. freedom of the
above renormalized metric.
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Canonical Quantization

The quantum analogue of the quadratic constraint is taken as:

ĤoΨ ≡ [−1

2
2c + Vren] Ψ(Y 1, Y 2, Y 3) = 0

with

2c = 2 +
d− 2

4 (d− 1)
R ,

where (Y 1, Y 2, Y 3) are given by the transformation

(y1, y2, y3) =

(e−
1
8

(5Y 1+3Y 3), eY
1+Y 2+Y 3

, e−
1
8

(5Y 1+3Y 3)F−1(e
1
24

(−9Y 1+8Y 2−15Y 3)))

and the renormalized metric is now given by:

gABren(Y 1, Y 2, Y 3) =


eY

1+Y 2+Y 3
0 0

0 −4
3 e

Y 1+Y 2+Y 3
0

0 0 −eY 1+Y 2+Y 3
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Canonical Quantization

The renormalized potential is

Vren = −2 ε e−
1
8

(5Y 1+3Y 3) −

−2 e−
1
8

(5Y 1+3Y 3)
[
L−1

(
F−1(e

1
24

(−9Y 1+8Y 2−15Y 3))
)]2

+

+2 Λ eY
1+Y 2+Y 3

+AT .

Exploiting the previously mentioned freedom in the choice of L,
we can simplify the potential by the choice

L(Ψ(1)) = m+

∫
(Ψ(1))3/2

((Ψ(1))
2 − ε)13/16

e
k− 3 ε

16((Ψ(1))2−ε) dΨ(1)

(where c1m+ c2 + c3 e
k = 0)

which satisfies the relation:

F−1
(
e

1
24

(−9Y 1+8Y 2−15Y 3)
)

= L

(√
e

1
24

(−9Y 1+8Y 2−15Y 3) − ε
)
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Canonical Quantization

Gathering all the pieces together, we end up with the following
Wheeler-deWitt equation:

2 Λ e2(Y 1+Y 2+Y 3)Ψ(Y 1, Y 2, Y 3)− 2 e
4
3
Y 2

Ψ(Y 1, Y 2, Y 3) +

AT e
Y 1+Y 2+Y 3

Ψ(Y 1, Y 2, Y 3)− 3

128
Ψ(Y 1, Y 2, Y 3)−

1

4

∂Ψ(Y 1, Y 2, Y 3)

∂Y 1
+

3

16

∂Ψ(Y 1, Y 2, Y 3)

∂Y 2
+

1

4

∂Ψ(Y 1, Y 2, Y 3)

∂Y 3
− 1

2

∂2Ψ(Y 1, Y 2, Y 3)

∂ (Y 1)2 +

3

8

∂2Ψ(Y 1, Y 2, Y 3)

∂ (Y 2)2 +
1

2

∂2Ψ(Y 1, Y 2, Y 3)

∂ (Y 3)2 = 0.
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Canonical Quantization

which is readily solved via separation of variables

Ψ(Y 1, Y 2, Y 3) = Ψ1(Y 1) Ψ2(Y 2) Ψ3(Y 3)

leading to the solutions:

Ψ1(Y 1) = c1 e
1
4(−1−

√
1+32m)Y 1

+ c2 e
1
4(−1+

√
1+32m)Y 1

Ψ2(Y 2) = c3 e
−Y 2/4 I−

√
3

8

√
3+128n

(
2
√

3 e2Y 2/3
)

+c4 e
−Y 2/4 I√3

8

√
3+128n

(
2
√

3 e2Y 2/3
)

Ψ3(Y 3) = c5 e
1
8(−2−

√
7+128m−128n)Y 3

+ c6 e
1
8(−2+

√
7+128m−128n)Y 3
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Summary

Summary

The proper imposition of quantum analogues of the linear
(momentum) constraint reduces an initial collection of
state vectors to all scalar smooth functionals.

The demand that the midi-superspace metric must define
on the space of these states an induced metric whose
components are given in terms of the same states, which is
made possible through an appropriate renormalization
Assumption and Requirement, severely reduces possible
state vectors to three unique smooth scalar functionals.

The quantum analogue of the Hamiltonian constraint
produces a Wheeler-deWitt equation based on the reduced
manifold of states, which is completely integrated.
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Open Questions

Open Questions

Before a probability can be assigned to each of these
geometries, two problems remain to be solved:

(1) Render finite the three smooth functionals y1, y2, y3.
(2) Select an appropriate inner product.

The first will need a final regularization of y1, y2, y3, but
the detailed way to do this will depend upon the particular
geometry under consideration.

For the second, a natural choice could be the determinant
of the induced renormalized metric, although the problem
with the positive definiteness may dictate another choice.
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Conceptual Query

Conceptual Query

If the above quantization scheme trully achieves general
coordinate invariant characterization of the wave function,
then there must be a way to classify classical geometries
using only first derivatives of the metrics.

The current state of knowledge for the subject is the
Cartan-Karlhede equivalence classification scheme, which
requires up to seven derivatives of the Riemann tensor.

BUT... we are working on it!!!!!!!!!!!!
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