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Lensing of the CMB photons along the line of sight

The lensing potential ψ deflects the photons by α(θ) = ∇ψ,
which amounts to remaping the temperature anisotropy
according to

T̃ (θ) = T (θ +∇ψ) = T (θ) +∇ψ · ∇T (θ) + O[(∇ψ)2].

For a line element

ds2 = a2(η)
[
−(1− 2Ψ)dη2 + (1 + 2Ψ)

[
dr2 + f 2

k (r)
(

dθ2
x + dθ2

y

)]]
the lensing potential is given by

ψ(θ) = −2
∫ rLS

0
dr

fk (rLS − r)

fk (rLS) fk (r)
Ψ(rθ,−r).

Relevance of lensing reconstruction for cosmology:
probe the full-sky large scale structure distribution.
allow to recover the primordial B-mode predicted by some
inflationary models, of which lensing is major contaminant.
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Estimator of the lensing potential (α)

Lensing effects are apparent in the power spectrum〈
T̃ (`′) T̃ (`′ − `)

〉
= δ(`) CTT

`′ + ` ·
[
`′ CTT

`′ + (`− `′) CTT
|`−`′|

]
ψ(`).

An estimator for ψ is a weighted average of the ` 6= 0 term

ψ̂(`, `′) =
T̃ (`′) T̃ (`− `′)[

` · `′ C`′ + ` · (`− `′) C|`−`′|
] .

The optimal estimator is the convolution of T̃ (`) by Qψ(`, `′)

ψ̂(`) =

∫
d2`′ T̃ (`′) T̃ (`− `′) Qψ(`, `′)

where

Qψ(`, `′) = N`
1
2
` · `′C`′ + ` · (`− `′)C|`−`′|

C̃`′C̃|`−`′|

N` =

[∫
d2`′

(2π)2
1
2

[` · `′ C`′ + ` · (`− `′) C|`−`′|]2

C̃`′ C̃|`−`′|

]−1

≡ Cψ̂(`)
` .
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Estimator of the lensing potential (β)

Expression can be straightforwardly modified to include
detector noise and finite beam width by replacing

C̃`′ → C̃`′ + N`′ .

The noise power spectrum is the inverse-sum of the detector
noise ni(`) of each channel i

N` =

(
num_chann∑

i=0

1
ni(`)

)−1

and ni(`) includes both the white noise amplitude and the beam
profile attenuation factor

ni(`) =
(
θfwhmiσpixi

)2 exp[+(θfwhmi )
2`(`+ 1)/(8 ln 2)].
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Do we need a new estimator?

Optimal reconstruction in harmonic space implicitly assumes
full-sky coverage without:

galactic cuts,
bad pixels due to excision of point sources,
nonuniform weighting for uneven sky coverage.

[Okamoto and Hu, Phys.Rev.D67, 083002 (2003)]

More sophisticated approaches based on a maximum
likelihood estimator [Smith, Zahn and Doré, Phys.Rev.D76,
043510 (2007)] treat inhomogeneous sky-coverage in harmonic
space [Hanson, Rocha and Górski, MNRAS 400, 2169 (2009)].

We consider a slightly less optimal estimator which:
has compact support,
acts in real space.

[Carvalho and Moodley, arXiv:1005.4288]
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Measuring the lensing potential from the CMB

Three ways of describing the lensing distortion of the CMB:
the lensing potential ψ,
the deflection vector α = ∇ψ,
the convergence tensor κ = −∇∇ψ/2 decomposed as

κ =

(
κ0 + κ+ κ×
κ× κ0 − κ+

)
.

The descriptions of ψ and α suffer from an ambiguity upon
translation, since a patch of the sky and its translation have the
same likelihood on account of isotropy. In contrast, the
description of the convergence is locally well defined.

Reconstruct κ0(θ) = −∇2ψ(θ)/2 with estimator κ̂0(`) = `2 ψ̂(`)
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A new estimator for the lensing potential (α)

An estimator for the convergence in real space

κ̂0(θ) =

∫
d2`

(2π)2 exp[i` · θ]

∫
d2`′ T̃ (`′) T̃ (`− `′) Q(`, `′)

≡
∫

d2θ′ T̃ (θ′)

∫
d2θ′′ T̃ (θ′′) Q(θ,θ′,θ′′),

where we define the weight function in real space by

Q(θ,θ′,θ′′) =

∫
d2`

(2π)2 exp[i` · θ]

×
∫

d2`′

(2π)2 exp[−i`′ · θ′] exp[−i(`− `′) · θ′′] Q(`, `′).

and Q(`, `′) = `2Qψ(`, `′).
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A new estimator for the lensing potential (β)

Q(`, `′) is a function of the lengths and the angle ξ` = φ` − φ`′
between ` and `′. Hence we expand in terms of eigenfunctions

Q(`, `′) =
+∞∑

m=−∞
exp[imξ`] Qm(`, `′)

Qm(`, `′) =
1

2π

∫
dξ` exp[−imξ`] Q(`, `′).

We find that

Q(θ′, θ′′, ξθ) ≡
+∞∑

m=−∞
exp[imξθ] Qm(θ′, θ′′, ξθ)

where ξθ = φθ′ − φθ′′ is the angle between θ′ and θ′′, and

Qm(θ′, θ′′, ξθ) =
1

(2π)2

∫ ∞
0

d` ` Jm(`θ′′)

×
∫ ∞

0
d`′ `′ Jm(`′(θ′ − θ′′ cos[ξθ])) Qm(`, `′).
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Bias of the estimator

To the convergence map contribute:
the convergence of the lensing potential
the convergence of the unlensed CMB (Gaussian noise)

κ̂0 = κ0|ψ + κ0|ψ=0.

To remove bias of the estimated map:
take pixel average 〈κ̂0〉 from a single realization of the sky
and subtract⇒ Gaussian noise averages out⇒
〈κ̂0〉 = 〈κ0|ψ〉 .

To remove bias of the estimated power spectrum:

compute
〈
κ0|ψ=0 κ0|∗ψ=0

〉
and subtract average variance

of the unlensed Gaussan noise over several realizations of
the CMB⇒

〈
κ̂0 κ̂

∗
0
〉

=
〈
κ0|ψ κ0|∗ψ

〉
.
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Some technical details: number of m’s

A TECHNICAL NOTE: We change to coordinates (`+, `−) such
that ` = `+ and `′ = (`+ + `−)/2.

max(Wm(`+, `−))/max(Wm=0(`+, `−)) and
max(Wm(θ+, θ−))/max(Wm=0(θ+, θ−)) versus m :
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Some technical details: compactness of the kernel (α)

Qm(`, `′) =
1

2π

∫
dξ` exp[−imξ`] Q(`, `′), m_max = 16
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Some technical details: compactness of the kernel (β)

Q(`, `′) = `2N`
1
2
` · `′C`′ + ` · (`− `′)C|`−`′|

C̃`′C̃|`−`′|
= N` Qintrinsic(`, `′)

The estimator variance N` weights the different ` modes in
such a way as to enhance the contribution of the highest `
modes accessible.
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Some technical details: compactness of the kernel (γ)

Wm(θ+, θ−) =
1

2π

∫
dχθ exp[−imχθ] W (θ+,θ−), num_m = 16
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My little pipeline

1 Synthesise lensed map by pixel remapping,
apodize, convolve with beam and add detector noise
[θfwhm = 7.8′, FOVmap = 67◦ and σpix = 6.8 f 1/2

sky µK/rad
(PLANCK noise at ν = 143 GHz)].

2 Deconvolve the lensed map with beam⇔ deconvolve the
kernel in harmonic space.

3 Generate kernel in real space.
4 Convolve the lensed map with the kernel and subtract

average value.
5 Compute the power spectrum Cκκ` and subtract average

power spectrum from unlensed realizations of the CMB.
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Results for noiseless Planck-like experiment

Harmonic space estimator Real space estimator

Black solid: Input power spectrum
Gray solid, light and dark: Output power spectrum
(reconstructed) before and after removal of bias
Black dashed-dotted: Total theoretical variance of the
estimator
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Results for noisy Planck-like experiment

Harmonic space estimator Real space estimator

Black solid: Input power spectrum
Gray solid, light and dark: Output power spectrum
(reconstructed) before and after removal of the bias
Black dashed-dotted: Total theoretical variance of the
estimator
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Observations

Estimate of the convergence in each pixel is the sum of product
of pairs of neighbouring pixels weighted by the kernel.

Loss of power at small scales: in theory `max ∼ 1/θfwhm but
in practice limited by 1/θkernel which measures the smallest
wavelengths probed by the kernel⇒ loss of recovered
power on angular scales smaller than θkernel .
No sensitivity to experimental noise: test with white noise
only⇒ noise, independent in each pixel, is averaged out.
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In progress...

Next step:
apply to maps with excisions of points
probe smaller angular scales (` = 4000) as expected for
the Atacama Cosmology Telescope

Next studies:
develop analogous estimator for the shear components of
the convergence tensor
complement estimation with the polarization field to
optimize the reconstruction from Planck
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