NEB XIV lonnina, 8-11 June 2010

Horizons, Singularities and
Causal Structure of the

Generalized McVittie Spacetimes

Malcolm Anderson

Universiti Brunel Darussalam



NEB XIV lonnina, 8-11 June 2010

1. Line Elements

e Schwarzschild metric in isotropic coordinates:
ds? = —(1 +22)72(1 = 20)%dt? + (1 + 22)*(dr? +r2d0?)
[d§)2* is the metric on the unit 2-sphere]

e McVittie spacetime (1933):

2 — _ ™ -2 _
ds® = (1'*'2-;%2:;) (1 2ra {"::",1

Edﬁﬁ)

fﬂ

A Schwarzschild black hole embedded in an FLRW spacetime?

e Generalized McVittie (GMcV) spacetimes (Faraoni and Jacques, 2007):

ds? = —(1+50)72(1 - T2ae2 + (1 + T %a (t)(dr? + r2d0?)
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2. Special Cases of the GMcV Spacetimes
e The original McVittie spacetime is recovered if m(t) = my/a(t).

[This is equivalent to a “no-accretion” condition: see Section 3.]

o If m(t) = my/a(t) and a(t) = exp (A/31), a transformation of the form

F=ar(l+ 02, dt = dt + A/3F(1 — 9)~Y2(1 = =2 — ZAF?)~1dF

reduces the McVittie line element to:
ds? = —(1- SAFR)AE? + (1 — 222 — ZAF2)~1dr? + 72 dQ?
which is the Kottler (1918) or Schwarzschild-de Sitter / anti-de Sitter metric.

o If m(t) = mg and aft) = agt?® the metric is of a form that Faraoni (2009) claimed

to be locally isometric to the Sultana-Dyer (2005) solution. In fact, the Sultana-Dyer
solution is not a GMcV spacetime (Sun, 2010).
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3. Accretion in the GMcV Spacetimes
e Einstein tensor components for the GMcV spacetimes:
Gf =3a™*(2r — m)~%[(2r + m)a + 2am)?
GE = 8a1(2r —m)~*(2r + m)(am + am)
T =G =Gy = 3a72(2r — m)“2[(2r + m)a + Zam)?
+2(2r — m)~*(2r + m)_[a~(2r — m)~X{(2r + m)a + 2anm}]

e McVittie (1933) generated his solutions by imposing the “no-accretion” condition
Gt = 0, which is equivalent to the constraint am = my.

e The Misner-Sharp (1964) mass M defined by
1—-2M/F=VFV,F where 7=(1+2)?2ar
has the value
M =ma + —r3a(2r — m)~2(2r + m)$[(2r + m)a + 2am)?

128
= M(r = m/2) is uniquely finite in the McVittie solution, but is not constant.
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4. Stress-Energy Source (Perfect Fluid)
e In a general spherically symmetric spacetime:
ds? = —A2(t,r)dt? + B2(t,r)(dr? + r2dQ?)
the stress-energy tensor of a perfect fluid is:
Iy = (p+ pJuuy +pdy
where p Is density, p Is pressure, and the bulk 4-velocity is
u® = (A~ *coshP, B~*sinhp,0,0)¢  wu, = (—Acoshp, Bsinhp,0,0),

e The Einstein equation & = =8nT;’ then implies for the GMcV spacetimes that

psinh?B + peosh?B=TF =TS =p
and A~1B(p + p)sinhf coshp = T} = £(ma)

The first equation is satisfied only if (p + p)sinhp = 0. So a GMcV spacetime with a
perfect fluid source must have T.,F = 0, ma = mg and be in the McVittie class.



NEB XIV lonnina, 8-11 June 2010

5. Stress-Energy Source (Heat Flux)
e Faraoni and Jacques (2007) proposed an imperfect fluid source:
Ty = (p+ pluuy + pdy + qup +uqy

where g% = (0,B~1g, 0,0)% is a heat flux vector.
e Then psinh®p -+ pcosh?p + 2gsinhp =T =T =p
and A™'B[(p + p)sinhp + ¢]coshp =T} = — %Gﬁ

The first equation implies that
q = —(p +p)sinhp

and the second that
%(ma} = —% (4r? — m*)*(p + p)sinhp coshp
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e Null energy condition:
Tfv,v? 20 with  v*=(4"1,B710,00* v, =(-4,B,00),

— ' =T = (p + p)cosh?p 20

or equivalently % (d/a) =0 and 1t % (ma)<0 and
: d? . d
either a— (ma) = a— (ma)
d2 d . d d
or [am(ma) — fsia(rmz)]2 < Zagmaﬁma)a(a;‘a)

e So ¢ > 0 and ma is increasing if the fluid velocity is inwards (sinhf < 0).

Also, if the Universe is expanding (& 2 Q) then 1 < 0 and %(mﬁ} 20.

e The condition 1> |tanhB| = |2471BGE/(GY = GY)]
Imposes even more complicated conditions on m and a.
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6. Singularities

e Assuming that m and a are positive and €= for all t<(0, ), scalar divergences can

only occur at
t=0,= r=0+t= and r=+m(t)/2.

e The Ricci scalar is:

R = —6a~%(2r — m)3[(2r — m){(2r + m)*(ad + a*) + 2(2r + m)a*m
+6a*m* + 4(3r + 2m)adm} + 8ram(2rd + am)]

It diverges at r = m/2 unless mam(méa + arh) = 0.

o If (mé& + ar) = 0 the McVittie solution is recovered (m = my/a) and
R = —6a~2(2ar — my) t[(2ar + my)ad + (2ar — 3my)a?]
R now diverges at = m/2 unless ad — a* =0 = a(t) = e** (Kottler solution).

e If M1 = 0 then R = —6a=%(2r — m)~2(2r + m)*(ad + a?)
R now diverges at r = m/2 unless ad + &* =0 = a(t) = (t — to)*?
If a(t) = t1/2 then R = 0 but R%*R;, diverges at r = m/2, as

R Ry, = t=4(2r — m)™*[z(2r +m)* = 512(2r + m)~*m?r#(]
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7. The Singular Surface atr = m/2

lonnina, 8-11 June 2010

e In the limit as r — m/2 the GMcV line element reduces to the metric of a spacelike

(or null, if M = 0) hypersurface:
ds® = da(t)* [m) de® + m(t)*dQ®]

e The density p diverges as

3 _—2¢1. . _2i 2 i _
—a~*(2r —m)~*[—(ma)]*| unless = (ma) = 0.

e The pressure p diverges as

-a~'(2r - m)‘amm%(ma) unless m%(mﬁ) = 0.

[As (Zr — m)~! ifiQmu:z) = 0 unless i(d{q) = 0; as (2r —m)~2 if m = 0 unless
( ) dt dt

a3 ]

e The heat flux g diverges as %a‘1(2r —m) 2 % (ma)

e The fluid speed tanhf3 goes to zero as - (2r —m)

2amm

d
unless = (ma) = 0.

unless M = 0.

¢ In the McVittie case, Kaloper, Kleban and Martin (2010) describe the surface
r =m/2 as an “inhomogeneous Big Bang” singularity.
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8. Apparent Horizons

e Future-directed radial null geodesics:
ul =g vl where v = (47,2871, 0,0)°
and the conformal factors .. > 0 are determined by the affine conditions
ulDyusd =

e The radial null geodesic expansions 6. = D, u are given by

0./x. = 2[B, £ (AB~'B,. + r~14)]
= 0. cm*(2¢0 — am) + 4m*(3p — am+ 1)r + 8m(3¢ + 2)r?
+16(¢ + am = 1)r® + 16ar*

where ¢ = %(ma}.

elntermsof « = dmand x = 2r —m)/m,

6. o 16¢ + 8(3¢ + a)x + 2(6¢ + 60 + 1)x2 + 2(d + 3o + 1)x> + ax*
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e Soif & > 0 and (n.e.c.) ¢ > 0 then:
¢ 0.>»0atr=(m/2) " andforr - =

¢ B, has no zeroes with r > m/2
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¢ ©_ has either 0 or 2 zeroes with r > m /2

= (At a given t) either there is no apparent horizon, or there are 2 anti-
trapping horizons — where 8, > 0 and ©_ changes from < 0 to > 0,

Horizons in parameter space

0.147
0.127

0.17
0.087
0.067
0.047
0.027

¢

=0

No horizons

2 anti-trapping

horizons

0

-0.027

-0.041

0.05

15

Degenerate horizon radius
. McVittie ¢

0.371

0.257
0.21
0.157
0.17
0.057,

OON/LEi/z 25 3 35 4 45 5“‘;”‘

[Null energy condition: ¢ > 0and m < 0 (= ¢ < @ )]

[McVittie solutions have ¢ = 0.]
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A McVittie solution
==(1+ef) and ¢=0
= a(t) = exp {z(t — e~ + 1)}, m(t) = 1/a(t)

t

Anti-trapped

region
; ; ; ; . T/m

o = N w S A D

A GMcV solution
- 3 - - 1—4%
=—(1+e7") and ¢ =10"%"

= a(t) = exp {2 "f(&— 27— e}, m(t) = 10~ %e* /a(t)

+

t

Anti-trapped
region

o = N w & A (=]

Fim

1 2 3 4 5
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9. Null Geodesic Completeness

o Affine lapse along radial null geodesics:
Al = f(A,’s:E) dt
where
%K:; = —,.B~1(B.+4,) and % = +4/B

2 = (am) 12+ 2)73 (1 + 2)[BE + 2(6E £ 1)x + 2(35 & 1)x? + Ex?)

with€ = o — ¢ = 0; and

L (k) = —(am) (2 + x)"*[16¢ £ 4 + 8(39 + . £ 1)
+4(3¢ + 3 + 1)x* + ax]

[Note that ‘;—f > 0 and i(ln k.) = 0 along all future-directed outgoing radial null
geodesics, and so A/x.= (2 + x)~1x/x.. is bounded below, and A% = I(Afﬂi_) dt
diverges.]
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Hence:

e A% is finite along any null curve terminating at a singular point

(t,r) = (to,m(t)/2)

(unless m is constant: then r» = m/2 is null as in Schwarzschild, and ¢ty = =)

o If lim, o+ m(t) > 0and lim,_, 4+ a(t) = 0,
A7 is finite along any null curve terminating at a singular point

(¢,r)=(0,1)
provided that lim,_,,+ 1/a(t) = 0 (otherwise 1; = =)

e A% is finite along any null curve terminating at a point on the apparent horizon.

e Qutgoing null geodesics: If lim,_,.. m(t) = 0then x — =« as m™* (r is bounded).

If lim,_,.. m(t) = m.. > 0then x and r are bounded if lim,_,.. &(t) = «; otherwise x
and r both go to w as ¢t — =.

In all cases A% diverges and the geodesics are future-complete.
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e Ingoing null geodesics: If £, = ,}“'E (a—¢) > xf@/‘? then the behavior is qualitatively

the same as for the outgoing null geodesics.

AZ diverges and the geodesics are future-complete.

If €, <w’§,’9then%—}0asx—a~x_and x., With x_ < 1 ++3 < x.,.

Ingoing geodesics with x > x_ have the same qualitative behavior as the outgoing
geodesics: they are again future-complete.

Ingoing geodesics with x < x_or x_ < x < x, asymptoteto x = x_as t —» «.

If ¢ =lim¢p < —(2 +x_)"*(1 + x_)(x2 — 2x_ — 2) then «_ is guaranteed to go to

[—=«

zero more rapidly than ¢~2.

AZ is finite and the geodesics are future-incomplete.

e The incompleteness of the ingoing radial null geodesics for a certain parameter range
generalizes the result of Kaloper, Kleban and Martin (2010) that the McVittie solutions

(which have ¢ = 0) are geodesically incomplete if lime. < V3/9
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